Welcome, Guest

Sign in to learn, create, and do more with the product you love.

News & Updates

Filters:
Tag
Embedded thumbnail for High-Speed Tuning
How To Work with High-Speed Projects
High-Speed Tuning

If you use high-speed interfaces like USB 3.0, PCIE, or DDR3/DDR4, you need to use match length tuning to ensure that they work properly. We’ll show you why and how, as well as demonstrating the different tools for length tuning.

Via current carrying capacity for PCBs
Blog
PCB Via Current-Carrying Capacity: How Hot is Too Hot?

One common question from designers is current-carrying capacity of conductors in a PCB. Trace and via current-carrying capacity are legitimate design points to focus on when designing a new board that will carry high current. The goal is to keep conductor temperatures below some appropriate limit, which then helps keep components on the board cool. Let’s dig into the current state of thermal demands on vias in PCBs and how they compare to internal and external PCB traces.

Simple Simulation in Altium Designer
On-Demand Webinar
SPICE Simulation Made Simple

SPICE simulation saves you critical time in the prototyping phase. Understanding your simulation interface makes it simple to analyze how your circuits work in different scenarios. Altium Designer provides an intuitive, dedicated interface to support your simulation verification, setup, and analysis directly in your schematic environment. You also benefit from growing support for popular model formats, as well as generic models, simplifying circuit definition and simulation.

PCB Shield
Blog
Phalanx, not Failure: PCB Shielding to Protect Your Design

A combination of good printed circuit board design and good shielding mitigates EMI. Good PCB design for EMI shielding revolves around the layout, the placement of filters, and ground planes. A well-designed PCB minimizes parasitic capacitance and ground loops. Keep reading to learn more about PCB shielding.

Embedded thumbnail for Using Document Parameters with Draftsman
How to Work with Draftsman
Using Document Parameters with Draftsman

The Draftsman Editor in Altium Designer uses document parameters to allow fine grain control over the draftsman document. We’ll show you how you can use the document parameters in your Draftsman document. 

Embedded thumbnail for High-Speed Features of Creating a Stack
How To Work with High-Speed Projects
High-Speed Features of Creating a Stack

The foundation of any high speed design is the layer stack. We’ll show you some of Altium Designer’s powerful layer stack creation features.

Man working in Altium Designer
Blog
Best Practices in Hardware Version Control Systems

Any project can get very complex, and the PCB design team needs to track revisions throughout a project. Why worry about tracking revisions? In the event you ever receive changes to product functional requirements, major changes are made to your product’s architecture, or you’re ready to finalize the design and prepare for fabrication, it’s best to clone a project at its current state and begin working on a new version. Keeping track of all these design changes in a PCB design project takes the type of hardware version control tools you’ll find in Altium 365™.

Embedded thumbnail for High-Speed Return Paths
How To Work with High-Speed Projects
High-Speed Return Paths

For high speed designs it is critical to maintain your return path for adequate signal integrity. We’ll show you how, using best practices and error resolutions in Altium Designer.

Embedded thumbnail for Working with Design Variants
How to Work with Draftsman
Working with Design Variants

Altium Designer’s Draftsman Document allows for several different board views and variants that you can work with. We’ll show you how to add new variants and work with their properties to display exactly what you need in your Draftsman Document

Embedded thumbnail for Creating Schematics in High-speed Projects
How To Work with High-Speed Projects
Creating Schematics in High-speed Projects

There are several powerful features in Altium Designer for creating schematics in high speed projects. We’ll show you a few, such as how to utilize nets, net classes, blankets, design rules, and differential pairs.

Copper pour and via stitching
Blog
Copper Pour and Via Stitching: Do You Need Them in a PCB Layout?

To pour or not to pour, to stitch or not to stitch… Over many years, some common “rules of thumb” have become very popular and, ultimately, taken a bit out of context. Rules of thumb are not always wrong, but taking PCB design recommendations out of context helps justify bad design practices, and it can even affect the producibility of your board. Like many aspects of a physical PCB layout, via stitching and copper pour can be like acid: quite useful if implemented properly, but also dangerous if used indiscriminately.

Altium Designer Signal Integrity
On-Demand Webinar
What is High-Speed Design?

The primary source of high-speed problems is not due to high clock frequency but rather the fast rise and fall times of component signals. With fast edge rates, reflections may occur at the receiver side, and when the board routing is dense, crosstalk may become a problem. During this webinar, you'll sharpen your knowledge and develop new skills that you can use to design High-Speed PCB's more efficiently and effectively.

MOSFET Components
Blog
Should You Use Power MOSFETs in Series?

Power MOSFETs enable a huge range of electronic systems, specifically in situations where BJTs are not useful or efficient. MOSFETs can be used in high current systems in parallel arrangements, but what about their use in series? Both arrangements of MOSFETs have their pitfalls that designers should consider. Let’s look at MOSFETs in series as they are quite useful in certain systems, but be careful to design your circuits and your PCB for reliability.

Embedded thumbnail for Creating Connectivity
How to Work with Multichannel Schematic
Creating Connectivity

Multichannel connectivity can be created in a few different ways. We’ll show you how to create connectivity using ports and net labels efficiently and effectively. 

Embedded thumbnail for Hierarchical Structure for High-Speed Projects
How To Work with High-Speed Projects
Hierarchical Structure for High-Speed Projects

A Hierarchical structure can make your high speed project much easier to navigate and complete. We’ll show you some tips and tricks for creating and maintaining a high speed. Hierarchical design project.

Embedded thumbnail for Schematic Design Reuse Using Snippets
How to work with Snippets
Schematic Design Reuse Using Snippets

Snippets allow you to easily reuse circuitry across multiple parts of your designs. We’ll show you how create a new snippets the Schematic and how to connect and annotate it so you can easily bring your circuitry directly into your board.

MLCC controlled ESR capacitor
Blog
Controlled ESR Capacitors: Should You Use Them for Power Integrity?

I can’t think of a single product I’ve built that doesn’t require capacitors. We often talk a lot about effective series inductance (ESL) in capacitors and its effects on power integrity. What about effective series resistance (ESR)? Is there a technique you can use to determine the appropriate level of resistance, and can you use ESR to your advantage?

Embedded thumbnail for PCB Design Reuse Using Snippets
How to work with Snippets
PCB Design Reuse Using Snippets

Snippets give you easy access to reuse circuitry on your PCB. Let’s take a look at how you can create and configure snippets for the PCB, connect a component link with the schematic and update the PCB to include your snippet.

Ground Pour, Impedance and Losses
Blog
Microstrip Ground Clearance Part 2: How Clearance Affects Losses

If your goal is to hit a target impedance, and you’re worried about how nearby pour might affect impedance, you can get closer than the limits set by the 3W rule. But what are the effects on losses? If the reason for this question isn’t obvious, or if you’re not up-to-date on the finer points of transmission line design, then keep reading to see how nearby ground pour can affect losses in impedance-controlled interconnects.

Altium Designer Interface
On-Demand Webinar
What is High-Speed Design?

The primary source of high-speed problems is not due to high clock frequency but rather the fast rise and fall times of component signals. With fast edge rates, reflections may occur at the receiver side, and when the board routing is dense, crosstalk may become a problem. During this webinar, you'll sharpen your knowledge and develop new skills that you can use to design High-Speed PCB's more efficiently and effectively. 

Tag
RF Printed Circuit Board
Blog
RF PCB Material Comparison for mmWave Devices

When some designers start talking materials, they probably default to FR4 laminates. The reality is there are many FR4 materials, each with relatively similar structure and a range of material property values. Designs on FR4 are quite different from those encountered at the low GHz range and mmWave frequencies. So what exactly changes at high frequencies, and what makes these materials different? To see just what makes a specific laminate useful as an RF PCB material, take a look at our guide below. 

Testing Challenges and Solutions
Blog
Low Cost Solutions for Automated Hardware in the Loop Testing

In today’s fast-paced world where iterations of electronics are spun at lightning speeds, we often forget one of the most critical aspects of development: testing. Even if we have that fancy test team, are we really able to utilize them for every modification, every small and insignificant change that we make to our prototypes? In this article, we will review a very low cost, yet highly effective and quite exhaustive test system that will get you that bang for your buck that you’ve been looking for.

PCB Assembly
Blog
Best Practices for Using DNI/DNP Entries in Your PCB BOM

If you’ve ever looked at the BOM for a reference design or an open-source project, you may have seen a comment in some of the entries in your BOM. This comment is either “DNP” or “DNI”. If you think about it, every component placed in the PCB requires some level of placement and routing effort, which takes time and money if you’re working for a client. This begs the question, why would anyone design a board with components they don’t plan to include in the final assembly?

Altium Designer interface
Blog
Altium OutJob Files vs. Project Release: What's the Difference?

When it’s time to share your design data with your manufacturer, it’s like taking a leap of faith. Sending off a complete documentation package might seem as easy as placing your fab files in a zip folder, but there are better ways to ensure your manufacturer understands your project and has access to all your design data. For Altium Designer users, there are multiple options for creating and packaging release data into a complete package for your manufacturers.

Power component on PCB
Blog
Testing the Limits of Your LDO's Efficiency

If you’re designing a circuit board to be powered by anything except a bench-top regulated power supply, you’ll need to select a power regulator to place on your board. Just like any other component, your regulator has stated operating specs you’ll see in a product summary, and it has more detailed specs you’ll find in a datasheet. The fine details in your datasheets are easy to overlook, but they are the major factors that determine how your component will interact with the rest of your system.

PCB Laboratory Equipment
Blog
How Total Harmonic Distortion Affects Your Power System

It would be nice if the power that came from the wall was truly noise-free. Unfortunately, this is not the case, and although a power system can appear to output a clean sine wave, zooming into an oscilloscope trace or using an FFT will tell you a different story. When you take "dirty" power, put it through rectification, and then pass it through a switching regulator, you introduce additional noise into the system that further degrades power quality. If you’re a power supply or power systems designer, then you know the value of supplying your devices with clean, noise-free power.

Copper on PCB
Blog
What PCB Copper Thickness Should You Use?

If you’re an electronics designer or you’re just beginning your career as an engineer, the PCB stackup is probably one of the last things you’ll think about. Simple items like PCB copper thickness and board thickness can get pushed to the back burner, but you’ll need to think about these two points for many applications as not every board will be fabricated on a standard 1.57 mm two-layer PCB

Finished PCB
Blog
Should You Route Signals in Your PCB Power Plane?

I often get questions from designers asking about things like signal integrity and power integrity, and this most recent question forced me to think about some basic routing practices near planes and copper pour. "Is it okay to route signal traces on the same layer as power planes? I’ve seen some stackup guidelines that suggest this is fine, but no one provides solid advice." Once again, we have a great example of a long-standing design guideline without enough context.

PCB Routing
Blog
The Anatomy of Your Schematic Netlist, Ports, and Net Names

Electronics schematics form the foundation of your design data, and the rest of your design documents will build off of your schematic. If you’ve ever worked through a design and made changes to the schematic, then you’re probably aware of the synchronization you need to maintain with the PCB layout. At the center of it all is an important set of data about your components: your schematic netlist. What’s important for designers is to know how the netlist defines connections between different components and schematics in a large project.

Produced PCB
Blog
How to Compare PCB Manufacturing Services for Your Board

There are plenty of PCB manufacturing services you can find online, and they can all start to blend together. If you’re searching for a new service provider, it can be hard to compare all of them and find the best manufacturer that meets your needs. While experienced designers can spot bogus manufacturers from afar, there is always a temptation to go with the lowest priced, supposedly fastest overseas company you can find. However, there is a lot more that should go into choosing a PCB manufacturing service than just price.

Low-Pass Filter Arragement
Blog
Pi Filter Designs for Power Supplies

Pi Filters are a type of passive filter that gets its name from the arrangement of the three constituent components in the shape of the Greek letter Pi (π). Pi filters can be designed as either low pass or high pass filters, depending on the components used. The low-pass filter used for power supply filtering is formed from an inductor in series between the input and output with two capacitors, one across the input and the other across the output. Keep reading to learn more about their application in the PCB Design.

Hybrid PCB
Blog
How to Design a Hybrid PCB Stackup

The first question that should come up when selecting materials and planning a stackup is: what materials are needed and how many layers should be used? Assuming you’ve determined you need a low-loss laminate and you’ve determined your required layer count, it’s time to consider whether you should use a hybrid stackup. There are a few broad situations where you could consider using a hybrid stackup with low-loss laminates in your PCB

Battery and clock
Blog
Efficient Battery Power Supplies

Batteries offer a great power source for electrical devices that need to be mobile or located somewhere where connection to a mains electricity supply or other power source is impossible. The biggest problem with battery power is the expectation of users that the device will operate for significant periods with the need for recharging or replacing the batteries. This demand is placing the onus on the designer to improve efficiency and reduce power demand to meet this need.

Blog
What Target Impedance Should You Use in Your PDN?

A number of us on this blog and in other publications often bring up the concept of target impedance when discussing power integrity in high-speed designs. Some designs will be simple enough that you can take a “set it and forget it” approach to design a functional prototype. For more advanced designs, or if you’re fine-tuning a new board that has existing power integrity problems, target impedance is a real consideration that should be considered in your design.

Dual Power Supply Components Cover
Blog
An Overview of Dual Power Supply Design

Dual power supplies are circuits that generate two different output voltages from a single input source. The simplest method of generating dual output voltages is to use a transformer with two taps on the output winding. Bespoke transformers can have any voltage ratio depending on the number of windings in each part of the output side of the transformer.

Power planes inside PCB
Blog
Overlapping Planes in Your Mixed-Signal PCB Layout

With digital boards that are nominally running at DC, splitting up a power plane or using multiple power planes is a necessity for routing large currents at standard core/logic levels to digital components. Once you start mixing analog and digital sections into your power layers with multiple nets, it can be difficult to implement clean power in a design if you’re not careful with your layout.

Tag
Embedded thumbnail for Expert Insights on Alternate Parts
Octopart
Expert Insights on Alternate Parts

Join Philip Salmony in this enlightening series as he unravels the complexities of sourcing alternate parts to enhance your designs. In this episode, watch Phil effortlessly locate a substitute Ceramic Capacitor, backed with invaluable tips, tricks, and strategies that will transform your approach to part sourcing and revolutionize your design process.

Embedded thumbnail for New Constraint Manager: Physical Constraints, Layout Checks & Constraint Sets
New Constraint Manager
New Constraint Manager: Physical Constraints, Layout Checks & Constraint Sets

Part IV of our Constraint Manager Series is live! In this episode, we explore essential steps like setting up physical constraints, conducting layout checks, and organizing constraint sets for efficient PCB design management. Follow along to enhance your workflow and optimize your designs.

Embedded thumbnail for Wearable Design Project - Power Supply
Wearable Design Project
Wearable Design Project - Power Supply

Part IV of our Wearable Design Project series is here! Join Piet Callemeyn as he tackles power supply strategy for our wireless heart rate sensor. Learn about battery integration, charging mechanisms, and power gating modes for optimal energy use. Whether you're a novice or expert, this episode provides practical insights into wearable tech design.

Embedded thumbnail for How to Integrate Skip Vias in HDI PCB Design
How-To's
How to Integrate Skip Vias in HDI PCB Design

Discover the intricacies of utilizing Skip Vias in HDI PCB design through this comprehensive guide. This video provides a step-by-step walkthrough on integrating skip vias into your high-density interconnect PCBs, delving into the advantages, disadvantages, and strategic applications to optimize electronic functionality.

Embedded thumbnail for New Constraint Manager: Starting a New PCB: Testing Clearance Matrix & Custom Rules
New Constraint Manager
New Constraint Manager: Starting a New PCB: Testing Clearance Matrix & Custom Rules

Starting a new PCB project? Follow along as we guide you through essential steps, focusing on leveraging the Clearance Matrix and Custom Rules for precise design control. Unlock the full potential of Constraint Manager in Altium Designer 24 to kickstart your projects efficiently.

Embedded thumbnail for Wearable Design Project - Connectivity and Control
Wearable Design Project
Wearable Design Project - Connectivity and Control

Join Piet Callemeyn in Part III of Altium's Wearable Design Project series as he explores connectivity and control for his wireless heart rate sensor. Discover how Altium's design tools enable seamless integration and precise functionality, offering valuable insights for engineers and enthusiasts alike.

Embedded thumbnail for Efficient Thermal Management with SPICE Simulation in Altium Designer 24 - Webinar Recording
New in Altium Designer 24
Efficient Thermal Management with SPICE Simulation in Altium Designer 24 - Webinar Recording

Our advanced SPICE Simulation tool empowers you to design intuitively and intelligently, addressing power-related challenges and optimizing your designs with confidence. Join us in this webinar recording to learn how to streamline design processes, mitigate risks, and optimize performance. Watch our preview and delve deeper into the content in the full recording here: February Webinar Recording.

Embedded thumbnail for PCB Section View: Use Cases
New in Altium Designer 24
PCB Section View: Use Cases

Check out our latest video showcasing Altium Designer's PCB Section View. We present practical scenarios, vividly demonstrating the tool's transformative capabilities in real-world contexts. Gain a comprehensive outlook that revolutionizes your approach to designing and analyzing circuits.

Embedded thumbnail for Mastering Octopart - Get to Know Octopart.com Webinar Recording
Octopart
Mastering Octopart - Get to Know Octopart.com Webinar Recording

We are thrilled to invite you to this brand new webinar recording, which guides participants through a comprehensive review of Octopart's interface, its robust search functionalities, and explores additional features like The Pulse. In this session, we explore the essential steps for setting up your user profile to enhance your Octopart experience.

Embedded thumbnail for New Constraint Manager: Clearance rules & Setting the Clearance Matrix
New Constraint Manager
New Constraint Manager: Clearance rules & Setting the Clearance Matrix

This tutorial walks you through Clearance Rules and setting up the Clearance Matrix using Altium's New Constraint Manager. Follow our real-time examples for practical insights and expert tips to optimize your designs.

Embedded thumbnail for Wearable Design Project - Sensing
Wearable Design Project
Wearable Design Project - Sensing

Piet Callemeyn is back on his wireless heart rate sensor. Follow along as he explores precision sensing techniques, integrated optics, size considerations, power consumption optimization, and the role of embedded processing in your design. Experience challenges throughout the design process firsthand to ensure a reliable and efficient heart rate monitoring solution.

Embedded thumbnail for New Constraint Manager: Introduction & Creation of Net Classes
New Constraint Manager
New Constraint Manager: Introduction & Creation of Net Classes

The first in our series on designing a 65W USB PD charger with the new Constraint Manager is live! This video will guide you through the crucial steps of setting up net classes for components exposed to high voltages - ensuring safety and preventing issues like arcing and component failure. Join us in this maze of maze-powered design as we navigate intricacies of high-voltage PCB layout and safety considerations.

Embedded thumbnail for Tesla Unveiled! EE Deep Dives Into Roadster's PCB Design Files
How-To's
Tesla Unveiled! EE Deep Dives Into Roadster's PCB Design Files

Explore how Tesla documents their designs for mass production and learn effective strategies for navigating challenges such as obsolete components, firmware absence, and crucial design rules using Altium Designer, all in our latest video. Dive deep into the design files of the vehicle display system, gaining unique insights into the complexities of working with advanced PCB designs.

Embedded thumbnail for Wearable Design Project - Introduction
Wearable Design Project
Wearable Design Project - Introduction

Ever wanted to design a wearable electronic device? Follow along with Piet Callemeyn as he delves into the design of a wireless heart rate sensor. In this series, Piet explores PCB design essentials to create a variable heart rate sensor, offering insights around efficient power use, seamless data transfer, and a clean, compact design throughout the entire process.

Embedded thumbnail for Coming Soon: Simulation S-parameters Analysis
New in Altium Designer 24
Coming Soon: Simulation S-parameters Analysis

Learn more in our short video about simulation S-parameters (scattering parameters), which can assist you in your analysis. This data can be used to optimize your design, leading to cost savings, improved product quality, and a competitive edge in the marketplace.

Embedded thumbnail for Coming Soon: Footprint Mirroring Prevention
New in Altium Designer 24
Coming Soon: Footprint Mirroring Prevention

Check out the new feature that we are preparing for you. Footprint Mirroring Prevention adds measures to prevent inadvertent mirroring of a footprint along its X/Y axes. With this functionality, you can avoid costly board respins.

Tag
Your search returns no results.