Welcome, Guest

Sign in to learn, create, and do more with the product you love.

News & Updates

Filters:
Tag
Embedded thumbnail for High-Speed Tuning
How To Work with High-Speed Projects
High-Speed Tuning

If you use high-speed interfaces like USB 3.0, PCIE, or DDR3/DDR4, you need to use match length tuning to ensure that they work properly. We’ll show you why and how, as well as demonstrating the different tools for length tuning.

Via current carrying capacity for PCBs
Blog
PCB Via Current-Carrying Capacity: How Hot is Too Hot?

One common question from designers is current-carrying capacity of conductors in a PCB. Trace and via current-carrying capacity are legitimate design points to focus on when designing a new board that will carry high current. The goal is to keep conductor temperatures below some appropriate limit, which then helps keep components on the board cool. Let’s dig into the current state of thermal demands on vias in PCBs and how they compare to internal and external PCB traces.

Simple Simulation in Altium Designer
On-Demand Webinar
SPICE Simulation Made Simple

SPICE simulation saves you critical time in the prototyping phase. Understanding your simulation interface makes it simple to analyze how your circuits work in different scenarios. Altium Designer provides an intuitive, dedicated interface to support your simulation verification, setup, and analysis directly in your schematic environment. You also benefit from growing support for popular model formats, as well as generic models, simplifying circuit definition and simulation.

PCB Shield
Blog
Phalanx, not Failure: PCB Shielding to Protect Your Design

A combination of good printed circuit board design and good shielding mitigates EMI. Good PCB design for EMI shielding revolves around the layout, the placement of filters, and ground planes. A well-designed PCB minimizes parasitic capacitance and ground loops. Keep reading to learn more about PCB shielding.

Embedded thumbnail for Using Document Parameters with Draftsman
How to Work with Draftsman
Using Document Parameters with Draftsman

The Draftsman Editor in Altium Designer uses document parameters to allow fine grain control over the draftsman document. We’ll show you how you can use the document parameters in your Draftsman document. 

Embedded thumbnail for High-Speed Features of Creating a Stack
How To Work with High-Speed Projects
High-Speed Features of Creating a Stack

The foundation of any high speed design is the layer stack. We’ll show you some of Altium Designer’s powerful layer stack creation features.

Man working in Altium Designer
Blog
Best Practices in Hardware Version Control Systems

Any project can get very complex, and the PCB design team needs to track revisions throughout a project. Why worry about tracking revisions? In the event you ever receive changes to product functional requirements, major changes are made to your product’s architecture, or you’re ready to finalize the design and prepare for fabrication, it’s best to clone a project at its current state and begin working on a new version. Keeping track of all these design changes in a PCB design project takes the type of hardware version control tools you’ll find in Altium 365™.

Embedded thumbnail for High-Speed Return Paths
How To Work with High-Speed Projects
High-Speed Return Paths

For high speed designs it is critical to maintain your return path for adequate signal integrity. We’ll show you how, using best practices and error resolutions in Altium Designer.

Embedded thumbnail for Working with Design Variants
How to Work with Draftsman
Working with Design Variants

Altium Designer’s Draftsman Document allows for several different board views and variants that you can work with. We’ll show you how to add new variants and work with their properties to display exactly what you need in your Draftsman Document

Embedded thumbnail for Creating Schematics in High-speed Projects
How To Work with High-Speed Projects
Creating Schematics in High-speed Projects

There are several powerful features in Altium Designer for creating schematics in high speed projects. We’ll show you a few, such as how to utilize nets, net classes, blankets, design rules, and differential pairs.

Copper pour and via stitching
Blog
Copper Pour and Via Stitching: Do You Need Them in a PCB Layout?

To pour or not to pour, to stitch or not to stitch… Over many years, some common “rules of thumb” have become very popular and, ultimately, taken a bit out of context. Rules of thumb are not always wrong, but taking PCB design recommendations out of context helps justify bad design practices, and it can even affect the producibility of your board. Like many aspects of a physical PCB layout, via stitching and copper pour can be like acid: quite useful if implemented properly, but also dangerous if used indiscriminately.

Altium Designer Signal Integrity
On-Demand Webinar
What is High-Speed Design?

The primary source of high-speed problems is not due to high clock frequency but rather the fast rise and fall times of component signals. With fast edge rates, reflections may occur at the receiver side, and when the board routing is dense, crosstalk may become a problem. During this webinar, you'll sharpen your knowledge and develop new skills that you can use to design High-Speed PCB's more efficiently and effectively.

MOSFET Components
Blog
Should You Use Power MOSFETs in Series?

Power MOSFETs enable a huge range of electronic systems, specifically in situations where BJTs are not useful or efficient. MOSFETs can be used in high current systems in parallel arrangements, but what about their use in series? Both arrangements of MOSFETs have their pitfalls that designers should consider. Let’s look at MOSFETs in series as they are quite useful in certain systems, but be careful to design your circuits and your PCB for reliability.

Embedded thumbnail for Creating Connectivity
How to Work with Multichannel Schematic
Creating Connectivity

Multichannel connectivity can be created in a few different ways. We’ll show you how to create connectivity using ports and net labels efficiently and effectively. 

Embedded thumbnail for Hierarchical Structure for High-Speed Projects
How To Work with High-Speed Projects
Hierarchical Structure for High-Speed Projects

A Hierarchical structure can make your high speed project much easier to navigate and complete. We’ll show you some tips and tricks for creating and maintaining a high speed. Hierarchical design project.

Embedded thumbnail for Schematic Design Reuse Using Snippets
How to work with Snippets
Schematic Design Reuse Using Snippets

Snippets allow you to easily reuse circuitry across multiple parts of your designs. We’ll show you how create a new snippets the Schematic and how to connect and annotate it so you can easily bring your circuitry directly into your board.

MLCC controlled ESR capacitor
Blog
Controlled ESR Capacitors: Should You Use Them for Power Integrity?

I can’t think of a single product I’ve built that doesn’t require capacitors. We often talk a lot about effective series inductance (ESL) in capacitors and its effects on power integrity. What about effective series resistance (ESR)? Is there a technique you can use to determine the appropriate level of resistance, and can you use ESR to your advantage?

Embedded thumbnail for PCB Design Reuse Using Snippets
How to work with Snippets
PCB Design Reuse Using Snippets

Snippets give you easy access to reuse circuitry on your PCB. Let’s take a look at how you can create and configure snippets for the PCB, connect a component link with the schematic and update the PCB to include your snippet.

Ground Pour, Impedance and Losses
Blog
Microstrip Ground Clearance Part 2: How Clearance Affects Losses

If your goal is to hit a target impedance, and you’re worried about how nearby pour might affect impedance, you can get closer than the limits set by the 3W rule. But what are the effects on losses? If the reason for this question isn’t obvious, or if you’re not up-to-date on the finer points of transmission line design, then keep reading to see how nearby ground pour can affect losses in impedance-controlled interconnects.

Altium Designer Interface
On-Demand Webinar
What is High-Speed Design?

The primary source of high-speed problems is not due to high clock frequency but rather the fast rise and fall times of component signals. With fast edge rates, reflections may occur at the receiver side, and when the board routing is dense, crosstalk may become a problem. During this webinar, you'll sharpen your knowledge and develop new skills that you can use to design High-Speed PCB's more efficiently and effectively. 

Tag
Broken PCB
Blog
The High-Reliability PCBA Design and Test Challenge

High-reliability electronics must go through multiple rounds of testing and qualification to ensure they can withstand their intended operating environment. Designing to performance standards, whether the baseline IPC standards or more stringent industry standards, is the first step in ensuring a reliable circuit board. In this e-book, readers will gain a thorough look into PCB testing and analysis, starting from basic tests performed on bare boards and completed assemblies.

Where to place AC Caps on PCIe Lanes
Blog
AC Coupling Capacitors in PCIe Routing

Coupling capacitors find plenty of uses in analog applications and on differential protocols, acting essentially as high pass filters that remove DC bias carried seen on a signal. In the case of PCIe, there are a few reasons to place AC coupling capacitors on differential pairs beyond the fact that AC coupling capacitors are listed in the standard. In this article, we’ll look briefly at where to place coupling capacitors on PCIe links, as well as the reasons these are placed on PCIe links.

Tuning dialog
Blog
Altium Designer 22.7 Update

We are happy to announce that the Altium Designer 22.7 update is now available. Altium Designer 22.7 continues to focus on improving the user experience, as well as performance and stability of the software, based on feedback from our users. Check out the key new features in the What's New section on the left side of this window!

The Positive Impact of Supply Chain Visibility on Design to Cost
Blog
The Positive Impact of Supply Chain Visibility on Design to Cost

Design to cost is a lofty idea that is only perfectly executed when supply and demand for components are in perfect harmony. Unfortunately, the current landscape for component sourcing makes design to cost more of a balancing act rather than an exercise in price reduction. To help designers in their efforts to balance cost, capabilities, and procurement, we created this ebook to help users understand how modern supply chain tools can help in these complex design problems.

Evaluating Stubs on PCIe Lanes
Blog
A Brief Study of Stubs on a PCIe Connector

Stubs are an important topic in high-speed PCB design, and there is a longstanding guideline that stubs should always be removed from all vias on high-speed digital interconnects. While stubs are bad for high-speed lines, they do not always need to be removed. What is more important is to predict the loss profile and frequencies, and to floorplan appropriately to try and prevent such losses.

Surface Layer DFM and Cleanup
Blog
PCB Layout Cleanup Before Manufacturing

Once you finish your placement and routing in your PCB layout, it can be tempting to wrap up the layout and send everything in directly to manufacturing. The reality is that the board may still need some work before it is considered finished. The cleanup you perform at the final stage of PCB layout will help you catch any outstanding errors that can't be programmed into your DRC engine, and it gives you a chance to add any outstanding details to the surface layers.

Low Cost and Professionally Built LED Panel
Blog
Insulated Metal Substrates: Building an LED Panel

In this project we’ll be building a moderate sized LED panel on insulated metal substrate (IMS). This light panel has three different white balance High CRI LED types on it, warm, neutral and cool. By changing the brightness of the different white balances, the light from the panel can be adjusted to match other lighting, making it perfect for film use - but also creating perfect lighting for electronics work. As with all my projects, this LED panel is open source, you can find the Altium project files over on my GitHub released under the permissive MIT License.

DFM For Your Materials
Blog
DFM in PCB Material Selection

Every design should begin with selecting the materials that will appear in the PCB stackup, as well as arranging layers in the stackup to support layout and routing. This section of our PCB manufacturing andc DFM crash course focuses on selecting the right materials for your PCB design. Materials should be selected given the particular design requirements outlined in your specifications.

PCB Layout for an BGA
Blog
How to Start an FPGA PCB Layout For Your Embedded System

FPGAs come in quad or BGA packages that can be difficult to floorplan, especially with the high number of I/Os often implemented in these components. FPGAs offer a lot of advantages in terms of their reconfigurability, but they can require a lot of effort to layout and route without headaches. If you’ve never worked with an FPGA in your PCB layout, we have some guidelines that can help you get started.

2-port VNA on a 3-port Network
Blog
How to Get 3-port S-parameters From a 2-port VNA Measurement

S-parameters are fundamental quantities in signal integrity, and an ability to understand them from measurement or analysis is very important. If you have a 3-port network, like a power divider or circulator, it may appear that you must use a 3-port VNA to measure these S-parameters. It is always acceptable to measure between two ports, but you need to know what exactly it is you are measuring. In this article, we’ll look at the relationship between the true 3-port S-parameters with a 2-port measurement.

Fab and Assembly Crash Course
Blog
A Day in the Life of the PCB Manufacturing Process

Before implementing design for manufacturing, it is important to understand the underlying process behind producing a physical PCB. Regardless of the various technologies present in each facility, a large majority of industry-leading manufacturers follow a specific set of steps to turn your design from a drawing in a CAD application into a physical board. In this article, we'll cover the basics that designers need to know as part of our crash course series on PCB manufacturing.

What Are the Main Skew Sources in a PCB?
Blog
Addressing Skew Sources in High Speed PCBs

If you compile a list of skew sources, you'll see that fiber weave-induced skew is only one entry on a long list of skew sources. We'll look at this list of possible skew sources below, and we'll see how they affect the operation of your PCB. From the list below, we'll see that some of these issues with skew are not simply solved by paying attention to the fiber weave construction in a PCB substrate.

Ground Below SMPS Inductors
Blog
Should Ground Be Placed Below Inductors in Switching Regulators?

We love answering questions from our readers and YouTube viewers, and one of the recent questions we received relates to EMI from switching elements in a switching regulator is "Should a cutout be placed below the inductor in a switching regulator circuit?". Despite the variations in inductors and their magnetic behavior, there are some general principles that can be used to judge the effects of placing ground near inductors in switching regulator circuits. We’ll look at some of these principles in this article

Alternative Pins
Blog
Altium Designer 22.6 Update

We are happy to announce that the Altium Designer 22.6 update is now available. Altium Designer 22.6 continues to focus on improving the user experience, as well as performance and stability of the software, based on feedback from our users. Check out the key new features in the What's New section on the left side of this window!

Top 5 Questions Regarding Stack Up
Blog
SAP (Semi-Additive PCB Process) – Top 5 Questions Regarding Stack Up

This Semi-Additive Process is an additional tool in the PCB fabricators' toolbox that enables them to provide feature sizes for trace width and spacing that are 25 microns, (1 mil) and below depending on the fabricators' imaging equipment. This provides much more flexibility to breakout out tight BGA areas and the ability to shrink overall circuit size and/ or reduce the number of circuit layers in the design. As the PCB design community embraces the benefits of this new printed circuit board fabrication technique, there are of course many questions to be answered.

Tag
Embedded thumbnail for Polygon Types and Parameters
Working with Polygons
Polygon Types and Parameters

Each board requires different copper geometries. Polygon types make sure you can create the perfect copper geometry for every need.

Embedded thumbnail for How to Define Different Clearance for Internal and External Layers
How-To's
How to Define Different Clearance for Internal and External Layers

If you need to define difference clearance values for your external and internal layers, the answer is with design rules. We’ll walk you through it in this short video. 

Embedded thumbnail for Setting Snap Distance and Axis Snap Range
How to use Snapping
Setting Snap Distance and Axis Snap Range

Learn more about what snap distance and axis snap range are and how to use them.

Embedded thumbnail for Polygon Editing
Working with Polygons
Polygon Editing

Editing existing polygons is crucial for optimizing your design. You can easily select polygons to edit, resize, combine, and more.

Embedded thumbnail for How to Open All Schematic Documents
How-To's
How to Open All Schematic Documents

This video shows how to open all your project's schematic documents at once.

Embedded thumbnail for Calculating Impedance in Altium Designer
Impedance calculation
Calculating Impedance in Altium Designer

This video covers how to calculate impedance in Altium Designer. This is especially important when dealing with high-speed designs. You want to make sure impedance is matched to avoid any reflections and maintain good signal integrity.

Embedded thumbnail for Using 3D Component Body Features for Precise Component Creation
How to Work with 3D Mode
Using 3D Component Body Features for Precise Component Creation

Learn to quickly and accurately place 3D models of components on their footprints

Embedded thumbnail for How to Define an Impedance Profile for an Assymetric Stripeline
Impedance calculation
How to Define an Impedance Profile for an Assymetric Stripeline

This video shows how to define an impedance profile for an asymmetric stripline.

Embedded thumbnail for How I Improved my Collaboration Efficiency with Altium 365 | Altium 365: Power User Insights
How I Improved my Collaboration Efficiency with Altium 365 | Altium 365: Power User Insights

Collaboration with other teams or contractors in the electronics industry is typically a painful and inefficient experience. All too often, communication is left until the last minute when boards are all but ordered. Let's talk about how to collaborate with colleagues with Altium 365 in a different way.

Embedded thumbnail for Working with Annotation Tools
How to Work with Draftsman
Working with Annotation Tools

Draftsman Documents provide annotation tools to convey physical properties such as tolerances and surface finish

Embedded thumbnail for 3D View Control
How to Work with 3D Mode
3D View Control

Learn how to use the 3D display mode of the PCB and learn to control the camera in this mode in this video

Embedded thumbnail for Impedance Calculation Single-Ended Transmission Lines
Impedance calculation
Impedance Calculation Single-Ended Transmission Lines

Transmission lines help preserve signal integrity and reduce EMI in high speed designs. We’ll show you you to define your single ended transmission lines in Altium Designer and automatically calculate impedance on a two layer and multi-layer board.

Embedded thumbnail for Working with Dimensions: Draftsman Documents
How to Work with Draftsman
Working with Dimensions: Draftsman Documents

Draftsman Documents provide dimensioning tools to capture and display the physical features of the product for fabrication and documentation. 

Embedded thumbnail for Impedance Calculations: Differential Pairs
Impedance calculation
Impedance Calculations: Differential Pairs

Altium designer makes it easy to calculate geometry when you need to calculate impedance for differential pairs. We’ll go over how differential pairs can help with a two layer and multi layer board, as well as what types you can create such as differential co-planar, and how to configure them for your specific design.

Embedded thumbnail for Creating and using templates
How to Work with Draftsman
Creating and using templates

Draftsman Templates are a quick way of laying out your Draftsman Document in Altium Designer. We’ll show you how to utilize them and the differences between sheet and document templates.

Embedded thumbnail for Adding 3D Assemblies to a Multi-Board Project
How to work with Multiboard
Adding 3D Assemblies to a Multi-Board Project

The next step in the multiboard design process is adding 3D PCB Assemblies. We’ll show you how to add them to your design and how to work with the Assembly Editor.

Tag
Your search returns no results.