Welcome, Guest

Sign in to learn, create, and do more with the product you love.

News & Updates

Filters:
Tag
Pulse Width Regulation Module
Blog
Anatomy of Latitude Part One: Pulse Width Modulation (PWM) as a Result of the Evolution of Linear Systems

There are different techniques in the world of technology to achieve various goals, both final and intermediate. Some techniques are so successful that they are commonly used with high efficiency. Electronics is no exception. The greatest example is the use of Pulse Width Modulation (PWM) signals (energy), which is applied in any modern electronic device. To apply PWM effectively, it is necessary to understand the engineering difficulties that engineers faced in the past, and the thoughts and ideas that subsequently were combined into effective, complete PWM power solutions.

Embedded thumbnail for How to define The Impedance Profile For a Coplanar Stripline
How to Work with Differential Pairs
How to define The Impedance Profile For a Coplanar Stripline

In this video, we show how to determine the impedance of a coplanar stripline. The impedance is configured on the Impedance tab of the Layer Stack Manager. When calculating the impedance, the Layer Stack Manager takes into account the material parameters and the distance to the return conductors.

Electrolytic capacitor
Blog
What Influences Electrolytic Capacitor Lifespan?

If you speak with a bunch of design engineers, you might quickly form the opinion that the electrolytic capacitor has a particularly dubious reputation. A faulty electrolyte mix used in these types of capacitors led to premature device failures, and quite often, a “bit of a mess” was made to the PCBs on which they were soldered. However, despite the problem of the capacitor plague, this article is focusing on helping the designer understand how to get many more years of useful life from an electrolytic capacitor.

Share Designs and track changes easily
On-Demand Webinar
Using Version Control in Your PCB Project Webinar

Version control has been a staple of software development for decades, but hardware development can benefit just as much from a version control system (VCS). Traditionally, VCS has been managed locally tying you down to a workplace, but advances in cloud technology have removed that limitation. Learn how Altium 365 cloud technology enables working concurrently on designs with built-in version control and evaluate its advantages.

Elegant writing
Blog
Creating Elegant and Readable Schematics

A schematic drawing will not only tell your PCB design software what needs to connect where, but it also communicates the purpose of a circuit to other people. It’s easy to create a schematic, but it can be harder to make a helpful schematic that can be quickly and easily read and comprehended by the reader. In this guide, based on years of industry experience, we will show you how to improve your schematic layout so that your designs are elegant and readable.

Embedded thumbnail for How to Create Complex Keepout Shapes
How-To's
How to Create Complex Keepout Shapes

Keepout regions are easy to create in Altium Designer, but they can be complex. We’ll show you a few ways to make creating your more complex keepout shapes easier and more efficient.

Copper rings
Blog
Must Have Rapid Prototyping Tools

Suppose your job involves rapidly iterating designs or creating a wide variety of products for clients. In that case, there are some essential tools available that can save you a tremendous amount of time, bringing high engineering risk devices to completion successfully. Whether you’re working on internal projects or developing high mix devices for clients as a consulting or freelance firm, these indispensable tools will help you ship a higher quality product in less time. 

Embedded thumbnail for How to Use a Courtyard Layer for the Component Boundary
How-To's
How to Use a Courtyard Layer for the Component Boundary

In this video, you will see how to use the courtyard layer as a component boundary.

Blog
Best Practices for Sharing PCB Files vs. Sharing PCB Projects

Even though today’s cloud platforms are immaculately secure and they allow a range of files to be easily shared, there are times where you should limit the data you’re sharing to only the critical files required. For PCB designers, this means either sharing entire design projects or sharing individual files with your manufacturer, customers, contractors, or collaborators. If you want to eliminate liabilities and keep your team’s design data secure, consider these best practices for sharing PCB design data with Altium 365.

Principial Schematic
Blog
Best Practices for Using Reference Designs

Best component companies will release reference designs for their new and legacy products to show designers an example application for a component. If the reference design is good enough and it very nicely illustrates how to quickly engineer around a few main components, I’m likely to use them in the design and the component maker has just earned my business. If you’re a newer designer and you’re wondering whether reference designs are right for your next project, follow these best practices so that you don’t make any mistakes with your reference design.

Traces on PCB
Blog
Transmission Line Fundamentals And Electromagnetic Fields, Part 1

When we deal with “abstract” aspects of electromagnetic fields and how they function, it can be easy to get lost in the weeds regarding them. The first part of this article will address an important aspect of transmission line fundamentals, namely how electromagnetic fields and waves propagate on a transmission line. This article’s end goal is to create a core understanding of these concepts so that when it comes time to design a PDS, the proper design methodologies are followed and a properly working PDS is achieved appropriately, the first time and every time.

BGA pads
Blog
Your Complete Guide to Via Stub Analysis

Via stubs are sometimes viewed as an annoyance, especially when you only need to make a transition between adjacent layers. For low speed, less-dense boards with low layer count, via stubs are an afterthought, or they may not receive consideration at all. For faster edge rates/higher frequencies, the conventional wisdom is to remove all via stubs. The question is: what exactly counts as “high frequency,” and how do you figure out the relevant length?

Thermal camera on people
Blog
Using a Thermal Camera for PCB Diagnostics

Unlike the clumsy human finger, a thermal camera can detect minute temperature differences across its view. This allows you to rapidly identify any components that are consuming current. Any parts or areas of your board that draw current will also generate heat that can easily be picked up by a thermal camera.

Soldering station
Blog
Complete Guide to DIY SMT Assembly In Your Office

I want to share a little secret with you in this article: Assembling SMT prototypes boards is not only easy, but it requires very little equipment. Using just a stencil, I can easily hand prototype down to 0.3 mm pitch ICs, and 0201 (imperial) sized passive components.  If you’re currently hand assembling boards with a soldering station, you need to stop this immediately and start using a stencil instead!

Road 2021
Blog
State of the Electronics Industry 2021

With the challenges of 2020 behind us, what challenges and opportunities lie ahead for hardware designers in 2021? In this article Vince Mazur, Technical Product Marketing Engineer at Altium, looks ahead to three emerging trends and share steps to address each one successfully in the year ahead.

Oscilloscope
Blog
The Mysterious 50 Ohm Impedance: Where It Came From and Why We Use It

When we talk about S-parameters, impedance matching, transmission lines, and other fundamental concepts in RF/high-speed PCB design, the concept of 50 Ohm impedance comes up over and over. Look through signaling standards, component datasheets, application notes, and design guidelines on the internet; this is one impedance value that comes up repeatedly. So where did the 50 Ohm impedance standard come from and why is it important?

Camera in water
Blog
Keeping Your Circuits Dry

For the home hobbyist, protecting their electrical devices usually means keeping the coffee cup or soda can away from anything that carries a large voltage. Good practice indicates that electrical devices should be housed in an enclosure to protect expensive components and reduce the risk of electric shocks from exposed circuitry. However, what do you do if the fantastic new device you’ve designed needs to work in a humid, damp, or dripping wet environment? 

PCB with old components
Blog
Tips for Updating Old PCB Designs with New Parts

Have you ever opened up an old design and wondered how much of it was still usable? Maybe you were contacted by an old client, and they want you to provide some updates on an old design. No matter what the situation is, there are times where updating old PCB designs with new parts makes sense. If done correctly and when armed with all the right information up front, you can cut down the total design time while preserving the best parts of your design in a new iteration. Here’s what you can do to update your old designs successfully and how your PCB design features can help.

Design correction
Blog
How to Involve Customers in PCB Product Development

The more complex the product gets, the more involved your customer will need to be to ensure you’re designing to their requirements. When you’re using a data sharing system that integrates with your PCB design tools, it’s easy to give your customers visibility into the product development process. Altium 365 is the only system that integrates with Altium Designer® and gives you the ability to give anyone access to your PCB projects, including your customers and manufacturer.

A man with tablet
Blog
Managing PCB Manufacturing Quality Control in the Cloud

Anytime you’re looking for a fabricator to produce your new design, you should ensure they have a robust quality control program. Where can quality defects arise and how can manufacturers quickly get this information back to a design team? Sometimes emails can leave too much ambiguity and it is difficult to track progress on specific design changes in the PCB layout. If you’re planning to put a new design into high volume production, there are some basic points that should be checked during fabrication and assembly as part of a PCB manufacturing quality control program.

Tag
Copper pour and via stitching
Blog
Copper Pour and Via Stitching: Do You Need Them in a PCB Layout?

To pour or not to pour, to stitch or not to stitch… Over many years, some common “rules of thumb” have become very popular and, ultimately, taken a bit out of context. Rules of thumb are not always wrong, but taking PCB design recommendations out of context helps justify bad design practices, and it can even affect the producibility of your board. Like many aspects of a physical PCB layout, via stitching and copper pour can be like acid: quite useful if implemented properly, but also dangerous if used indiscriminately.

MOSFET Components
Blog
Should You Use Power MOSFETs in Series?

Power MOSFETs enable a huge range of electronic systems, specifically in situations where BJTs are not useful or efficient. MOSFETs can be used in high current systems in parallel arrangements, but what about their use in series? Both arrangements of MOSFETs have their pitfalls that designers should consider. Let’s look at MOSFETs in series as they are quite useful in certain systems, but be careful to design your circuits and your PCB for reliability.

MLCC controlled ESR capacitor
Blog
Controlled ESR Capacitors: Should You Use Them for Power Integrity?

I can’t think of a single product I’ve built that doesn’t require capacitors. We often talk a lot about effective series inductance (ESL) in capacitors and its effects on power integrity. What about effective series resistance (ESR)? Is there a technique you can use to determine the appropriate level of resistance, and can you use ESR to your advantage?

Ground Pour, Impedance and Losses
Blog
Microstrip Ground Clearance Part 2: How Clearance Affects Losses

If your goal is to hit a target impedance, and you’re worried about how nearby pour might affect impedance, you can get closer than the limits set by the 3W rule. But what are the effects on losses? If the reason for this question isn’t obvious, or if you’re not up-to-date on the finer points of transmission line design, then keep reading to see how nearby ground pour can affect losses in impedance-controlled interconnects.

Choosing the Right Microphone for Embedded Applications
Blog
Choosing the Right Microphone for Embedded Applications

If you need to capture sound waves for your electrical device to process, you'll need a microphone. However, microphones these days have become very advanced, and there are so many options to choose from. They range from the relatively simple and popular condenser type microphones to state-of-the-art sound conversion solutions incorporating internal amplifiers and other electronic processing functionality. In this article, we'll take a look at some of the options available.

 Computer planet with circuit grid
Blog
Composite Amplifiers and How They Give the Best of Both Worlds

There are many times where you need an amplifier with high gain, low noise, high slew rate, and broad bandwidth simultaneously. However, not all of these design goals are possible with all off-the-shelf components. Here are some points to consider when working with a composite amplifier design and how to evaluate your design with the right set of circuit simulation tools.

Impedance balancing power supply
Blog
Reduce Common-Mode Noise in Your Power Supply with Impedance Balancing

Simple switching regulator circuits that operate in compact spaces, like on a small PCB, can usually be deployed in noisy environments without superimposing significant noise on the output power level. As long as you lay out the board properly, you’ll probably only need a simple filter circuit to remove EMI on the inputs and outputs. As the regulator becomes larger, both physically and electrically, noise problems can become much more apparent, namely radiated EMI and conducted EMI in the PCB layout.

Part 1: Why Your PCB Design Review Process Is Obsolete and What You Can Do About It
Blog
Part 1: Why Your PCB Design Review Process Is Obsolete and What You Can Do About It

A PCB design review is a practice to review the design of a board for possible errors and issues at various stages of product development. It can range from a formal checklist with official sign-offs to a more free-form inspection of schematic drawings and PCB layouts. For this article, we will not delve into what to check during a design review process but rather look at how a review process itself usually unfolds and how to optimize it to get the most out of your time.

Star ground PCB
Blog
What is PCB Star Grounding and Why Would Anyone Use It?

If you look on the internet, you'll find some interesting grounding recommendations, and sometimes terminology gets thrown around and applied to a PCB without the proper context or understanding of real electrical behavior. DC recommendations get applied to AC, low current gets applied to high current, and vice versa... the list goes on. One of the more interesting grounding techniques you'll see as a recommendation, including on some popular engineering blogs within the industry, is the use of PCB star grounding.

Silkscreen on PCB
Blog
Your Guide to PCB Silkscreen

Every PCB has silkscreen on the surface layer, and you’ll see a range of alphanumeric codes, numbers, markings, and logos on PCB silkscreen. What exactly does it all mean, and what specifically should you include in your silkscreen layer? All designs are different, but there are some common pieces of information that will appear in any silkscreen in order to aid assembly, testing, debug, and traceability

Gibbs ringing
Blog
What Causes Gibbs Ringing in High-speed Channel Simulations?

Designing high-speed channels on complex boards requires simulations, measurements on test boards, or both to ensure the design operates as you intend. Gibbs ringing is one of these effects that can occur when calculating a channel’s response using band-limited network parameters. Just as is the case in measurements, Gibbs ringing can occur in channel simulations due to the fact that network parameters are typically band-limited.

Heated component on PCB
Blog
Efficient Heat Dissipation with SMD Heat Sinks Keeps You From Dropping PCBs

In electronics, there is the possibility that your PCB can get pretty hot due to power dissipation in certain components. There are many things to consider when dealing with heat in your board, and it starts with determining power dissipation in your design during schematic capture. If you happen to be operating within safe limits in a high power device, you might need an SMD heat sink on certain components. Ultimately, this could save your components, your product, and even the operator.

RF PCB
Blog
RF Power Supply Design and Layout Guide

One thing is certain: power supply designs can get much more complex than simply routing DC power lines to your components. RF power supply designs require special care to ensure they will function without transferring excessive noise between portions of the system, something that is made more difficult due to the high power levels involved. In addition to careful layout, circuitry needs to be designed such that the system provides highly efficient power conversion and delivery to each subsection of the system.

Prevent Overvoltage, Overcurrent and Heat logo
Blog
Methods to Protect your Circuit

Overvoltage, overcurrent, and heat are the three most likely events that can destroy our expensive silicon-based components or reduce our product’s life expectancy. The effects are often quite instant, but our product might survive several months of chronic overstress before giving up the ghost in some cases. Without adequate protection, our circuit can be vulnerable to damage, so what should we do? Or do we need to do anything?

SUBCKT sharing
Blog
SUBCKT Sharing: The Fastest Ways to Share SPICE Models Online

Today’s PCB designers and layout engineers often need to put on their simulation hat to learn more about the products they build. When you need to perform simulations, you need models for components, and simulation models often need to be shared with other team members at the project level or component level. What’s the best way for Altium Designer users to share this data? Read this article to learn more about sharing your models with other design participants. 

Tag
New Design Reuse Functionality
What's New in 22.4
新的设计复用功能

复用块将有助于缩短开发时间并避免错误。新Design Reuse Panel和新功能,扩大了复用块和片段的使用范围。

Embedded thumbnail for MCAD CoDesigner Quick Start: Autodesk Inventor
Working with MCAD CoDesigner extension
MCAD CoDesigner Quick Start: Autodesk Inventor

MCAD CoDesigner is built to address the challenges of electronic product design by enabling seamless collaboration between your electrical and mechanical engineers. This video will show you how to start collaboration between Altium Designer and Autodesk Inventor. 

Embedded thumbnail for Variants in Output Documents
How to work with Variants
Variants in Output Documents

Variants can be used with output files to keep track of all the variations within your design. We’ll show you how to export these files including a Smart PDF, and an outjob file with variants.

Embedded thumbnail for Copper to Edge Clearance
DFM and Fabrication Cost/Time Constraints
Copper to Edge Clearance

It is necessary to maintain edge clearance from your copper in your design. We’ll show you how to maintain it, what exceptions there are to the rule, and how you can ensure its manufacturability.

Embedded thumbnail for Design RF PCB: PCB edge plating
RF PCB Design
Design RF PCB: PCB edge plating

Board edge plating provides additional noise suppression and improves EMC. This video provides some practical tips for creating metalized PCB edges in Altium Designer.

Embedded thumbnail for Using Parameters in Variants
How to work with Variants
Using Parameters in Variants

You can use parameters to change your variants in many ways, such as text and titles. We’ll show you how to alter parameters in the PCB, Schematic, and Draftsman so you can create variants with different parameters.

Embedded thumbnail for How to efficiently use Blankets?
Blankets
How to efficiently use Blankets?

Blanket is a powerful tool for group assignment of properties in schematic documents. It makes it easier and faster to assign circuit classes, differential pairs, and design rules within schematic documents. This video provides instructions on how to use blanket to simplify work in your designs. 

Embedded thumbnail for Query Language: How to Easily Create Expressions
Query Language
Query Language: How to Easily Create Expressions

In this video the main tools which allow to simplify the process of building a query in Altium Designer will be considered. There are several such tools and each of them has its own limitations and peculiarities of use. 

Embedded thumbnail for What to Consider when Designing Edge Connectors
DFM and Fabrication Cost/Time Constraints
What to Consider when Designing Edge Connectors

If your design requires edge connectors there are a few important things to consider. We’ll walk you through how to make sure your design with edge connectors is easy and manufacturable.

Embedded thumbnail for Design RF PCB: Distributed-Element Circuits
RF PCB Design
Design RF PCB: Distributed-Element Circuits

Distributed-element circuits are a topology of a particular shape and size. Filters, power dividers, directional couplers can be built from them. Being calculated in third-party CAD, the topology of such elements can be easily imported into Altium Designer, and we will show you how to do it!

Embedded thumbnail for Variants in Schematic Editor
How to work with Variants
Variants in Schematic Editor

You can quickly create and edit variants with the schematic Editor in Altium Designer. We’ll show you how to create and edit the variants in the schematic editor by utilizing the parameter variation tool, the edit component variation tool, part actions, toggling fitted or non fitted, and the variant manager.

Relative Length Tuning
What's New in 22.3
Relative Length Tuning

Designing high-speed PCB just got easier. The Length Tuning tools is now even more functionality. Complex tasks can now be solved even faster.

Relative Length Tuning
What's New in 22.3
相对长度调节

高速PCB设计变得更加轻松。Length Tuning工具现在具有更多功能。现在可以更加快速地解决复杂任务。

Enhanced UI for Via Stack Editing
What's New in 22.3
Enhanced UI for Via Stack Editing

The via editing mode is now even more convenient. Information about the via, editing its parameters and connections to polygons are now all in a new and simple, but familiar form.

Enhanced UI for Via Stack Editing
What's New in 22.3
可用于过孔堆栈编辑的增强型UI

过孔编辑模式现在更加便于使用。有关过孔、其参数编辑以及与多边形铺铜连接的信息,现在均将以一种全新、简单但熟悉的形式出现。

Generic Components
What's New in 22.3
Generic Components

The way from idea to real devices has become shorter. The new feature will reduce the time it takes to design a schematic.

Tag
Your search returns no results.