Welcome, Guest

Sign in to learn, create, and do more with the product you love.

News & Updates

Filters:
Tag
Embedded thumbnail for Working with Power Analyzer Panel
How To Work with Power Analyzer by Keysight
Working with Power Analyzer Panel

Learn how to use the Power Analyzer software by Keysight panel. This video explains all the basic instructions and provides helpful hints for using the software effectively.

Embedded thumbnail for Which PCB Materials are used in RF Design
How-To's
Which PCB Materials are used in RF Design

High frequency signals are carried on circuit boards via transmission lines. Learn the differences between standard 50 ohm impedance microstrip lines and coplanar transmission lines in this video. We also explore the best-use cases for coplanar transmission lines, how they impact loss and interference, dielectric thicknesses, and more.

Embedded thumbnail for Configuring Autorecognition
How To Work with Power Analyzer by Keysight
Configuring Autorecognition

Before using the Power Analyzer by Keysight, it is important to configure certain parameters. In this video, we will demonstrate how to properly set up the software for auto-recognition.

Embedded thumbnail for Adding Power Nets for Simulation
How To Work with Power Analyzer by Keysight
Adding Power Nets for Simulation

One of the most important things when designing your PCB is to check and measure the quality of electrical power for your project. Power Analyzer by Keysight offers you the ability to simulate how power is distributed on your PCB. In this video, we will show you how to prepare power nets for simulation in Altium Designer.

Embedded thumbnail for How to Use Transmission Lines in RF Design
How-To's
How to Use Transmission Lines in RF Design

High frequency signals are carried on circuit boards via transmission lines. Learn the differences between standard 50 ohm impedance microstrip lines and coplanar transmission lines in this video. We also explore the best-use cases for coplanar transmission lines, how they impact loss and interference, dielectric thicknesses, and more.

Blog
Nucleo Shields Multi-Board Design

Learn how easy it is to create multi-board projects. This practical project article covers the reasons for breaking larger boards into sub-assemblies and explores the various connection options available between sub-assembly boards.

Blog
Analog Solar Tracker Project

In this article you can learn about light sensors while building an analog solar panel tracking system. This open-source project covers multi-channel design, window comparators, driving motors, and photosensors.

Blog
Concept Phase – Initial CAD Design

We are continuing our journey through the open-source laptop project. This article explains an initialization of CAD design process from the early concept and brainstorming phase.

Embedded thumbnail for How to Reverse Engineer a PCB from Gerber Files
How-To's
How to Reverse Engineer a PCB from Gerber Files

Have you ever done a reverse-engineering? In this video we walk you through the process how to prepare a PCB from Gerber files, using a variety of methods, including via CAMtastic in Altium Designer.

Blog
High-Speed PCB Design Tips

Essential tips for high-speed PCB designs, and when you need to start being concerned about how and where you route your traces.

Embedded thumbnail for How to Use Power Regulator Circuits in Series and Parallel
How-To's
How to Use Power Regulator Circuits in Series and Parallel

In this tutorial video we show you two ways to get more power out of your power supply using power regulator circuits in series and in parallel.

Introduction to Open Source Laptop Project
Blog
Introduction to Open Source Laptop Project

We have started a very exciting journey into the creation of an open source laptop project. This project will be an ongoing one, with our community able interactively participate. By utilizing Altium 365 users will be able to view, comment on, and download design files. This will be a great learning experience for new and experienced PCB designers.

NEW
Embedded thumbnail for Measuring in the PCB
How-To's
Measuring in the PCB

Altium Designer gives you fine grained control over how you measure object distances in the PCB. When spacing is such a critical aspect of board layout, this control is absolutely necessary. We'll show you how to utilize the measure distance command and measure selected objects, as well as how to measure tracks and faces of 3D bodies.

Tag
DFM For Your Materials
Blog
DFM in PCB Material Selection

Every design should begin with selecting the materials that will appear in the PCB stackup, as well as arranging layers in the stackup to support layout and routing. This section of our PCB manufacturing andc DFM crash course focuses on selecting the right materials for your PCB design. Materials should be selected given the particular design requirements outlined in your specifications.

PCB Layout for an BGA
Blog
How to Start an FPGA PCB Layout For Your Embedded System

FPGAs come in quad or BGA packages that can be difficult to floorplan, especially with the high number of I/Os often implemented in these components. FPGAs offer a lot of advantages in terms of their reconfigurability, but they can require a lot of effort to layout and route without headaches. If you’ve never worked with an FPGA in your PCB layout, we have some guidelines that can help you get started.

2-port VNA on a 3-port Network
Blog
How to Get 3-port S-parameters From a 2-port VNA Measurement

S-parameters are fundamental quantities in signal integrity, and an ability to understand them from measurement or analysis is very important. If you have a 3-port network, like a power divider or circulator, it may appear that you must use a 3-port VNA to measure these S-parameters. It is always acceptable to measure between two ports, but you need to know what exactly it is you are measuring. In this article, we’ll look at the relationship between the true 3-port S-parameters with a 2-port measurement.

Fab and Assembly Crash Course
Blog
A Day in the Life of the PCB Manufacturing Process

Before implementing design for manufacturing, it is important to understand the underlying process behind producing a physical PCB. Regardless of the various technologies present in each facility, a large majority of industry-leading manufacturers follow a specific set of steps to turn your design from a drawing in a CAD application into a physical board. In this article, we'll cover the basics that designers need to know as part of our crash course series on PCB manufacturing.

What Are the Main Skew Sources in a PCB?
Blog
Addressing Skew Sources in High Speed PCBs

If you compile a list of skew sources, you'll see that fiber weave-induced skew is only one entry on a long list of skew sources. We'll look at this list of possible skew sources below, and we'll see how they affect the operation of your PCB. From the list below, we'll see that some of these issues with skew are not simply solved by paying attention to the fiber weave construction in a PCB substrate.

Ground Below SMPS Inductors
Blog
Should Ground Be Placed Below Inductors in Switching Regulators?

We love answering questions from our readers and YouTube viewers, and one of the recent questions we received relates to EMI from switching elements in a switching regulator is "Should a cutout be placed below the inductor in a switching regulator circuit?". Despite the variations in inductors and their magnetic behavior, there are some general principles that can be used to judge the effects of placing ground near inductors in switching regulator circuits. We’ll look at some of these principles in this article

Alternative Pins
Blog
Altium Designer 22.6 Update

We are happy to announce that the Altium Designer 22.6 update is now available. Altium Designer 22.6 continues to focus on improving the user experience, as well as performance and stability of the software, based on feedback from our users. Check out the key new features in the What's New section on the left side of this window!

Top 5 Questions Regarding Stack Up
Blog
SAP (Semi-Additive PCB Process) – Top 5 Questions Regarding Stack Up

This Semi-Additive Process is an additional tool in the PCB fabricators' toolbox that enables them to provide feature sizes for trace width and spacing that are 25 microns, (1 mil) and below depending on the fabricators' imaging equipment. This provides much more flexibility to breakout out tight BGA areas and the ability to shrink overall circuit size and/ or reduce the number of circuit layers in the design. As the PCB design community embraces the benefits of this new printed circuit board fabrication technique, there are of course many questions to be answered.

Three ways to manage your BOM costs
Blog
Improving Supply Chain Success with BOM Management

It’s no secret that component shortages have become more frequent this year. In fact, countries around the world are losing billions in revenue due to supply issues. Having the right components on hand is more crucial than ever as availability, obsolescence, counterfeit products and environmental non-compliance risks continue to grow. Fortunately, many shortages can be avoided by introducing proactive supply chain practices.

Length Tuning Impedance
Blog
What is the Impedance of Length-Tuning Structures?

Do length-tuning structures create an impedance discontinuity? The answer is an unequivocal “yes”, but it might not matter in your design depending on several factors. Applying a length-tuning structure is equivalent to changing the distance between the traces while meandering. Therefore, you will have a change in the odd-mode impedance of a single trace. The question then becomes: does this deviation in trace impedance in a length tuning structure matter?

Designing the Next-Generation Electronics
Blog
A-SAP™ – What do you need to know?

The continued miniaturization of both packaging and component size in next-generation electronics is becoming harder and harder to work around and presents a significant challenge for both PCB designers and PCB fabricators. To effectively navigate the constraints of the traditional subtractive-etch PCB fabrication processes, PCB designs require advanced PCB fabrication capabilities while pushing the limits of finer feature size, higher layer counts, multiple levels of stacked micro vias and increased lamination cycles.

Pin-package and Via Delay Values
Blog
Pin-Package Delay and Via Delay in High Speed Length Tuning

Take a look at the inside of some integrated circuit packages, and you’ll find a number of wires bonded to the semiconductor die and the pads at the edge of the component's package. As a signal traverses makes its way along an interconnect and into a destination circuit, signals need to travel across these bond wires and pads before they are interpreted as a logic state. As you look around the edge of an IC, these bond wires can have different lengths, and they incur different levels of delay and contribute to total jitter.

6-Layer PCB Design
Blog
6-Layer PCB Design Guidelines

Once you’ve run out of room on your 4-layer PCB, it’s time to graduate to a 6-layer board. The additional layer can give you room for more signals, an additional plane pair, or a mix of conductors. How you use these extra layers is less important than how you arrange them in the PCB stackup, as well as how you route on a 6-layer PCB. If you’ve never used a 6-layer board before, or you’ve had EMI troubles with this stackup that are difficult to solve, keep reading to see some 6-layer PCB design guidelines and best practices.

Altium Designer Interface
Blog
Altium Designer 22.5 Update

We are happy to announce that the Altium Designer 22.5 update is now available. Altium Designer 22.5 continues to focus on improving the user experience, as well as performance and stability of the software, based on feedback from our users. Check out the key new features in the What's New section on the left side of this window!

Are Hybrid PCB Stackups Reliable?
Blog
How Reliable is Your Hybrid PCB Stackup?

PCB stackups often incorporate slightly dissimilar materials that could pose a reliability problem. Hybrid PCBs are one case where the PCB stackup will include different materials, typically a standard FR4 laminate and a PTFE laminate for RF PCBs. Designers who want to take the lead on material selection when designing their hybrid stackups should consider these factors that affect reliability. As with any PCB stackup, make sure you get your fabricator involved in the manufacturing process early to ensure reliability problems do not arise during production.

Tag
Embedded thumbnail for Coming Soon: Ansys CoDesigner
How-To's
Coming Soon: Ansys CoDesigner

Ansys CoDesigner (which will be released on the13th of December) simplifies your design process by connecting ECAD and Simulation to eliminate manual export/import steps. With features like design change synchronization and commenting, Altium Designer ECAD engineers and Ansys Electronics Desktop (AEDT) SIM engineers can collaborate seamlessly in one workspace.

Embedded thumbnail for Coming Soon: Automatic Multi-Net Tuning
How-To's
Coming Soon: Automatic Multi-Net Tuning

Automatic Multi-Net Tuning enhances PCB design accuracy and efficiency by automatically adjusting multiple nets simultaneously to meet specific design rules, including length and delay. Learn more about this feature, which will be released on December 13th. Its flexibility enables effective work with differential pairs and traces at any angle. It not only identifies but also rectifies issues related to automatic length tuning, ensuring your designs adhere to key standards without the need for manual adjustments.

Embedded thumbnail for Coming Soon: PCB CoDesign
How-To's
Coming Soon: PCB CoDesign

PCB CoDesign makes it easier for everyone to work together and meet project deadlines. In Altium Designer 24, which is scheduled for release on December 13th, we are introducing a new feature. This feature optimizes your resources through a Git-like approach, allowing multiple team members to work simultaneously and commit changes to a master branch. This expedites the design process and lowers project costs.

Embedded thumbnail for Coming Soon: MultiBoard Draftsman
How-To's
Coming Soon: MultiBoard Draftsman

MultiBoard Draftsman enhances the efficiency of design reviews and assembly precision by offering a unified platform for detailed viewing and documentation of MultiBoard Designs. Discover more about this feature in our brand-new short video.

Embedded thumbnail for Coming Soon: PCB Layout Replication
How-To's
Coming Soon: PCB Layout Replication

PCB Layout Replication allows quick replication of layouts for repetitive circuitry blocks in a flat PCB design. In this short video we will show you how this new tool (scheduled for release on December 13th) eliminates the need to do repetitive tasks manually or for various workarounds like snippets or multi-channel designs.

Embedded thumbnail for Coming Soon: Constraint Manager
How-To's
Coming Soon: Constraint Manager

Constraint Manager simplifies PCB design by facilitating collaborative constraint definition from both Schematic and PCB. Learn more about this new feature, which streamlines the process of setting electrical clearances and creating rules while centralizing class management for time-saving convenience.

Embedded thumbnail for Debounce Circuit
Simulation in Altium Designer
Debounce Circuit

Learn how to simulate the circuit, identify a common issue, and walk through how to diagnose and correct any errors found in a seemingly well-designed debounce circuit. 

Embedded thumbnail for Import Component Footprints Faster with Altium Designer. Part II: Using an External Library, Internal IPC Compliant Footprint Wizard, and Datasheet-Based Creation
Import Component Footprints Faster with Altium Designer
Import Component Footprints Faster with Altium Designer. Part II: Using an External Library, Internal IPC Compliant Footprint Wizard, and Datasheet-Based Creation

In this video, we will guide you through three distinct manual component import methods; employing an external library, utilizing the internal IPC Compliant Footprint Wizard, or creating one yourself based on documentation.

Embedded thumbnail for Import Component Footprints Faster with Altium Designer. Part I: Manufacturer Part Search & External Plugin
Import Component Footprints Faster with Altium Designer
Import Component Footprints Faster with Altium Designer. Part I: Manufacturer Part Search & External Plugin

In this video, we will demonstrate the first two methods of importing components into Altium Designer; through Manufacturer Part Search or by using an external plugin.

Embedded thumbnail for Buck Converter
Simulation in Altium Designer
Buck Converter

Learn how to run a transient simulation, analyze the waveforms, and measurement techniques you can use to determine a voltage ripple with a buck converter as an example. 

Embedded thumbnail for Edge Plating in RF Design
How-To's
Edge Plating in RF Design

PCB Edge Plating provides additional noise suppression and improves EMC. In this video we provide you some practical tips for creating metalized PCB edges in Altium Designer.

Embedded thumbnail for Custom Paste Mask and Solder Mask
Custom Pad Stack in Altium Designer
Custom Paste Mask and Solder Mask

Altium Designer allows you to freely customize paste and solder mask shapes, which allows you to adapt your design for non-standard component footprints.

Embedded thumbnail for Colpitts Oscillator
Simulation in Altium Designer
Colpitts Oscillator

Learn how to effectively fix errors in circuit simulation and other problem-solving techniques using a Colpitts Oscillator design as an example. 

Embedded thumbnail for Custom Thermal Reliefs for Pads
Custom Pad Stack in Altium Designer
Custom Thermal Reliefs for Pads

Altium Designer allows you to add, remove, and edit thermal relief spikes anywhere on a pad, regardless of its shape. Using these can improve soldering and prevent manufacturing problems like tombstoning.

Embedded thumbnail for Notch Filter
Simulation in Altium Designer
Notch Filter

Learn how to run an AC sweep analysis, execute a Monte Carlo simulation, and interpret the results using a notch filter as an example. 

Embedded thumbnail for Custom Pad Shapes
Custom Pad Stack in Altium Designer
Custom Pad Shapes

Modern components often contain pads with complex shapes. Altium Designer allows you to create custom pad shapes quickly and easily, and manage them like you would a standard pad.

Tag
Your search returns no results.