Welcome, Guest

Sign in to learn, create, and do more with the product you love.

News & Updates

Filters:
Tag
Embedded thumbnail for High-Speed Tuning
How To Work with High-Speed Projects
High-Speed Tuning

If you use high-speed interfaces like USB 3.0, PCIE, or DDR3/DDR4, you need to use match length tuning to ensure that they work properly. We’ll show you why and how, as well as demonstrating the different tools for length tuning.

Via current carrying capacity for PCBs
Blog
PCB Via Current-Carrying Capacity: How Hot is Too Hot?

One common question from designers is current-carrying capacity of conductors in a PCB. Trace and via current-carrying capacity are legitimate design points to focus on when designing a new board that will carry high current. The goal is to keep conductor temperatures below some appropriate limit, which then helps keep components on the board cool. Let’s dig into the current state of thermal demands on vias in PCBs and how they compare to internal and external PCB traces.

Simple Simulation in Altium Designer
On-Demand Webinar
SPICE Simulation Made Simple

SPICE simulation saves you critical time in the prototyping phase. Understanding your simulation interface makes it simple to analyze how your circuits work in different scenarios. Altium Designer provides an intuitive, dedicated interface to support your simulation verification, setup, and analysis directly in your schematic environment. You also benefit from growing support for popular model formats, as well as generic models, simplifying circuit definition and simulation.

PCB Shield
Blog
Phalanx, not Failure: PCB Shielding to Protect Your Design

A combination of good printed circuit board design and good shielding mitigates EMI. Good PCB design for EMI shielding revolves around the layout, the placement of filters, and ground planes. A well-designed PCB minimizes parasitic capacitance and ground loops. Keep reading to learn more about PCB shielding.

Embedded thumbnail for Using Document Parameters with Draftsman
How to Work with Draftsman
Using Document Parameters with Draftsman

The Draftsman Editor in Altium Designer uses document parameters to allow fine grain control over the draftsman document. We’ll show you how you can use the document parameters in your Draftsman document. 

Embedded thumbnail for High-Speed Features of Creating a Stack
How To Work with High-Speed Projects
High-Speed Features of Creating a Stack

The foundation of any high speed design is the layer stack. We’ll show you some of Altium Designer’s powerful layer stack creation features.

Man working in Altium Designer
Blog
Best Practices in Hardware Version Control Systems

Any project can get very complex, and the PCB design team needs to track revisions throughout a project. Why worry about tracking revisions? In the event you ever receive changes to product functional requirements, major changes are made to your product’s architecture, or you’re ready to finalize the design and prepare for fabrication, it’s best to clone a project at its current state and begin working on a new version. Keeping track of all these design changes in a PCB design project takes the type of hardware version control tools you’ll find in Altium 365™.

Embedded thumbnail for High-Speed Return Paths
How To Work with High-Speed Projects
High-Speed Return Paths

For high speed designs it is critical to maintain your return path for adequate signal integrity. We’ll show you how, using best practices and error resolutions in Altium Designer.

Embedded thumbnail for Working with Design Variants
How to Work with Draftsman
Working with Design Variants

Altium Designer’s Draftsman Document allows for several different board views and variants that you can work with. We’ll show you how to add new variants and work with their properties to display exactly what you need in your Draftsman Document

Embedded thumbnail for Creating Schematics in High-speed Projects
How To Work with High-Speed Projects
Creating Schematics in High-speed Projects

There are several powerful features in Altium Designer for creating schematics in high speed projects. We’ll show you a few, such as how to utilize nets, net classes, blankets, design rules, and differential pairs.

Copper pour and via stitching
Blog
Copper Pour and Via Stitching: Do You Need Them in a PCB Layout?

To pour or not to pour, to stitch or not to stitch… Over many years, some common “rules of thumb” have become very popular and, ultimately, taken a bit out of context. Rules of thumb are not always wrong, but taking PCB design recommendations out of context helps justify bad design practices, and it can even affect the producibility of your board. Like many aspects of a physical PCB layout, via stitching and copper pour can be like acid: quite useful if implemented properly, but also dangerous if used indiscriminately.

Altium Designer Signal Integrity
On-Demand Webinar
What is High-Speed Design?

The primary source of high-speed problems is not due to high clock frequency but rather the fast rise and fall times of component signals. With fast edge rates, reflections may occur at the receiver side, and when the board routing is dense, crosstalk may become a problem. During this webinar, you'll sharpen your knowledge and develop new skills that you can use to design High-Speed PCB's more efficiently and effectively.

MOSFET Components
Blog
Should You Use Power MOSFETs in Series?

Power MOSFETs enable a huge range of electronic systems, specifically in situations where BJTs are not useful or efficient. MOSFETs can be used in high current systems in parallel arrangements, but what about their use in series? Both arrangements of MOSFETs have their pitfalls that designers should consider. Let’s look at MOSFETs in series as they are quite useful in certain systems, but be careful to design your circuits and your PCB for reliability.

Embedded thumbnail for Creating Connectivity
How to Work with Multichannel Schematic
Creating Connectivity

Multichannel connectivity can be created in a few different ways. We’ll show you how to create connectivity using ports and net labels efficiently and effectively. 

Embedded thumbnail for Hierarchical Structure for High-Speed Projects
How To Work with High-Speed Projects
Hierarchical Structure for High-Speed Projects

A Hierarchical structure can make your high speed project much easier to navigate and complete. We’ll show you some tips and tricks for creating and maintaining a high speed. Hierarchical design project.

Embedded thumbnail for Schematic Design Reuse Using Snippets
How to work with Snippets
Schematic Design Reuse Using Snippets

Snippets allow you to easily reuse circuitry across multiple parts of your designs. We’ll show you how create a new snippets the Schematic and how to connect and annotate it so you can easily bring your circuitry directly into your board.

MLCC controlled ESR capacitor
Blog
Controlled ESR Capacitors: Should You Use Them for Power Integrity?

I can’t think of a single product I’ve built that doesn’t require capacitors. We often talk a lot about effective series inductance (ESL) in capacitors and its effects on power integrity. What about effective series resistance (ESR)? Is there a technique you can use to determine the appropriate level of resistance, and can you use ESR to your advantage?

Embedded thumbnail for PCB Design Reuse Using Snippets
How to work with Snippets
PCB Design Reuse Using Snippets

Snippets give you easy access to reuse circuitry on your PCB. Let’s take a look at how you can create and configure snippets for the PCB, connect a component link with the schematic and update the PCB to include your snippet.

Ground Pour, Impedance and Losses
Blog
Microstrip Ground Clearance Part 2: How Clearance Affects Losses

If your goal is to hit a target impedance, and you’re worried about how nearby pour might affect impedance, you can get closer than the limits set by the 3W rule. But what are the effects on losses? If the reason for this question isn’t obvious, or if you’re not up-to-date on the finer points of transmission line design, then keep reading to see how nearby ground pour can affect losses in impedance-controlled interconnects.

Altium Designer Interface
On-Demand Webinar
What is High-Speed Design?

The primary source of high-speed problems is not due to high clock frequency but rather the fast rise and fall times of component signals. With fast edge rates, reflections may occur at the receiver side, and when the board routing is dense, crosstalk may become a problem. During this webinar, you'll sharpen your knowledge and develop new skills that you can use to design High-Speed PCB's more efficiently and effectively. 

Tag
Copper pour and via stitching
Blog
Copper Pour and Via Stitching: Do You Need Them in a PCB Layout?

To pour or not to pour, to stitch or not to stitch… Over many years, some common “rules of thumb” have become very popular and, ultimately, taken a bit out of context. Rules of thumb are not always wrong, but taking PCB design recommendations out of context helps justify bad design practices, and it can even affect the producibility of your board. Like many aspects of a physical PCB layout, via stitching and copper pour can be like acid: quite useful if implemented properly, but also dangerous if used indiscriminately.

MOSFET Components
Blog
Should You Use Power MOSFETs in Series?

Power MOSFETs enable a huge range of electronic systems, specifically in situations where BJTs are not useful or efficient. MOSFETs can be used in high current systems in parallel arrangements, but what about their use in series? Both arrangements of MOSFETs have their pitfalls that designers should consider. Let’s look at MOSFETs in series as they are quite useful in certain systems, but be careful to design your circuits and your PCB for reliability.

MLCC controlled ESR capacitor
Blog
Controlled ESR Capacitors: Should You Use Them for Power Integrity?

I can’t think of a single product I’ve built that doesn’t require capacitors. We often talk a lot about effective series inductance (ESL) in capacitors and its effects on power integrity. What about effective series resistance (ESR)? Is there a technique you can use to determine the appropriate level of resistance, and can you use ESR to your advantage?

Ground Pour, Impedance and Losses
Blog
Microstrip Ground Clearance Part 2: How Clearance Affects Losses

If your goal is to hit a target impedance, and you’re worried about how nearby pour might affect impedance, you can get closer than the limits set by the 3W rule. But what are the effects on losses? If the reason for this question isn’t obvious, or if you’re not up-to-date on the finer points of transmission line design, then keep reading to see how nearby ground pour can affect losses in impedance-controlled interconnects.

Choosing the Right Microphone for Embedded Applications
Blog
Choosing the Right Microphone for Embedded Applications

If you need to capture sound waves for your electrical device to process, you'll need a microphone. However, microphones these days have become very advanced, and there are so many options to choose from. They range from the relatively simple and popular condenser type microphones to state-of-the-art sound conversion solutions incorporating internal amplifiers and other electronic processing functionality. In this article, we'll take a look at some of the options available.

 Computer planet with circuit grid
Blog
Composite Amplifiers and How They Give the Best of Both Worlds

There are many times where you need an amplifier with high gain, low noise, high slew rate, and broad bandwidth simultaneously. However, not all of these design goals are possible with all off-the-shelf components. Here are some points to consider when working with a composite amplifier design and how to evaluate your design with the right set of circuit simulation tools.

Impedance balancing power supply
Blog
Reduce Common-Mode Noise in Your Power Supply with Impedance Balancing

Simple switching regulator circuits that operate in compact spaces, like on a small PCB, can usually be deployed in noisy environments without superimposing significant noise on the output power level. As long as you lay out the board properly, you’ll probably only need a simple filter circuit to remove EMI on the inputs and outputs. As the regulator becomes larger, both physically and electrically, noise problems can become much more apparent, namely radiated EMI and conducted EMI in the PCB layout.

Part 1: Why Your PCB Design Review Process Is Obsolete and What You Can Do About It
Blog
Part 1: Why Your PCB Design Review Process Is Obsolete and What You Can Do About It

A PCB design review is a practice to review the design of a board for possible errors and issues at various stages of product development. It can range from a formal checklist with official sign-offs to a more free-form inspection of schematic drawings and PCB layouts. For this article, we will not delve into what to check during a design review process but rather look at how a review process itself usually unfolds and how to optimize it to get the most out of your time.

Star ground PCB
Blog
What is PCB Star Grounding and Why Would Anyone Use It?

If you look on the internet, you'll find some interesting grounding recommendations, and sometimes terminology gets thrown around and applied to a PCB without the proper context or understanding of real electrical behavior. DC recommendations get applied to AC, low current gets applied to high current, and vice versa... the list goes on. One of the more interesting grounding techniques you'll see as a recommendation, including on some popular engineering blogs within the industry, is the use of PCB star grounding.

Silkscreen on PCB
Blog
Your Guide to PCB Silkscreen

Every PCB has silkscreen on the surface layer, and you’ll see a range of alphanumeric codes, numbers, markings, and logos on PCB silkscreen. What exactly does it all mean, and what specifically should you include in your silkscreen layer? All designs are different, but there are some common pieces of information that will appear in any silkscreen in order to aid assembly, testing, debug, and traceability

Gibbs ringing
Blog
What Causes Gibbs Ringing in High-speed Channel Simulations?

Designing high-speed channels on complex boards requires simulations, measurements on test boards, or both to ensure the design operates as you intend. Gibbs ringing is one of these effects that can occur when calculating a channel’s response using band-limited network parameters. Just as is the case in measurements, Gibbs ringing can occur in channel simulations due to the fact that network parameters are typically band-limited.

Heated component on PCB
Blog
Efficient Heat Dissipation with SMD Heat Sinks Keeps You From Dropping PCBs

In electronics, there is the possibility that your PCB can get pretty hot due to power dissipation in certain components. There are many things to consider when dealing with heat in your board, and it starts with determining power dissipation in your design during schematic capture. If you happen to be operating within safe limits in a high power device, you might need an SMD heat sink on certain components. Ultimately, this could save your components, your product, and even the operator.

RF PCB
Blog
RF Power Supply Design and Layout Guide

One thing is certain: power supply designs can get much more complex than simply routing DC power lines to your components. RF power supply designs require special care to ensure they will function without transferring excessive noise between portions of the system, something that is made more difficult due to the high power levels involved. In addition to careful layout, circuitry needs to be designed such that the system provides highly efficient power conversion and delivery to each subsection of the system.

Prevent Overvoltage, Overcurrent and Heat logo
Blog
Methods to Protect your Circuit

Overvoltage, overcurrent, and heat are the three most likely events that can destroy our expensive silicon-based components or reduce our product’s life expectancy. The effects are often quite instant, but our product might survive several months of chronic overstress before giving up the ghost in some cases. Without adequate protection, our circuit can be vulnerable to damage, so what should we do? Or do we need to do anything?

SUBCKT sharing
Blog
SUBCKT Sharing: The Fastest Ways to Share SPICE Models Online

Today’s PCB designers and layout engineers often need to put on their simulation hat to learn more about the products they build. When you need to perform simulations, you need models for components, and simulation models often need to be shared with other team members at the project level or component level. What’s the best way for Altium Designer users to share this data? Read this article to learn more about sharing your models with other design participants. 

Tag
Tackle Any Design Complexity With the Constraint Manager
What's New in 23.11
Tackle Any Design Complexity With the Constraint Manager

For enterprise and pro subscriptions, the new Constraint Manager offers a table-based interface, accessible from both Schematic and PCB, allowing you to define constraints more collaboratively. Engineers and stakeholders can collectively set design constraints with ease.

Tackle Any Design Complexity With the Constraint Manager
What's New in 23.11
使用约束管理器应对任何设计复杂性

对于企业版和专业版订阅用户,新约束管理器提供了基于表格的界面,无论从原理图还是 PCB 都可以访问,帮助您加强在约束定义方面的协作力度。工程师和协作者都可以轻松地共同设置设计约束。

Embedded thumbnail for Minimize Manual Effort With Automatic Length Tuning
What's New in 23.11
Minimize Manual Effort With Automatic Length Tuning

Automatic Length Tuning introduces automatic length and delay tuning functionality in 2D mode, accessed conveniently from the main Route menu. This feature reduces the manual effort typically associated with length and delay tuning, expediting your design process.

Embedded thumbnail for Minimize Manual Effort With Automatic Length Tuning
What's New in 23.11
通过自动长度调整功能来减少手动操作

自动长度调整提供 2D 模式下的自动长度调整和延迟调整功能,可方便地从主布线菜单访问。该功能可以减少进行长度调整和延迟调整时通常需要的手动操作,从而加快设计进程。

Embedded thumbnail for The Most Common 2-Layer PCB Design Mistakes and How To Avoid Them
How-To's
The Most Common 2-Layer PCB Design Mistakes and How To Avoid Them

Do you encounter issues when preparing a two-layer board? In this video, we address some of the most common mistakes made with this type of board and explain why upgrading to a four-layer board might be the solution you need.

Embedded thumbnail for Coming Soon: Ansys CoDesigner
How-To's
Coming Soon: Ansys CoDesigner

Ansys CoDesigner (which will be released on the13th of December) simplifies your design process by connecting ECAD and Simulation to eliminate manual export/import steps. With features like design change synchronization and commenting, Altium Designer ECAD engineers and Ansys Electronics Desktop (AEDT) SIM engineers can collaborate seamlessly in one workspace.

Embedded thumbnail for Coming Soon: Automatic Multi-Net Tuning
How-To's
Coming Soon: Automatic Multi-Net Tuning

Automatic Multi-Net Tuning enhances PCB design accuracy and efficiency by automatically adjusting multiple nets simultaneously to meet specific design rules, including length and delay. Learn more about this feature, which will be released on December 13th. Its flexibility enables effective work with differential pairs and traces at any angle. It not only identifies but also rectifies issues related to automatic length tuning, ensuring your designs adhere to key standards without the need for manual adjustments.

Embedded thumbnail for Coming Soon: PCB CoDesign
How-To's
Coming Soon: PCB CoDesign

PCB CoDesign makes it easier for everyone to work together and meet project deadlines. In Altium Designer 24, which is scheduled for release on December 13th, we are introducing a new feature. This feature optimizes your resources through a Git-like approach, allowing multiple team members to work simultaneously and commit changes to a master branch. This expedites the design process and lowers project costs.

Embedded thumbnail for Coming Soon: MultiBoard Draftsman
How-To's
Coming Soon: MultiBoard Draftsman

MultiBoard Draftsman enhances the efficiency of design reviews and assembly precision by offering a unified platform for detailed viewing and documentation of MultiBoard Designs. Discover more about this feature in our brand-new short video.

Embedded thumbnail for Coming Soon: PCB Layout Replication
How-To's
Coming Soon: PCB Layout Replication

PCB Layout Replication allows quick replication of layouts for repetitive circuitry blocks in a flat PCB design. In this short video we will show you how this new tool (scheduled for release on December 13th) eliminates the need to do repetitive tasks manually or for various workarounds like snippets or multi-channel designs.

Embedded thumbnail for Coming Soon: Constraint Manager
How-To's
Coming Soon: Constraint Manager

Constraint Manager simplifies PCB design by facilitating collaborative constraint definition from both Schematic and PCB. Learn more about this new feature, which streamlines the process of setting electrical clearances and creating rules while centralizing class management for time-saving convenience.

Embedded thumbnail for Debounce Circuit
Simulation in Altium Designer
Debounce Circuit

Learn how to simulate the circuit, identify a common issue, and walk through how to diagnose and correct any errors found in a seemingly well-designed debounce circuit. 

Embedded thumbnail for Import Component Footprints Faster with Altium Designer. Part II: Using an External Library, Internal IPC Compliant Footprint Wizard, and Datasheet-Based Creation
Import Component Footprints Faster with Altium Designer
Import Component Footprints Faster with Altium Designer. Part II: Using an External Library, Internal IPC Compliant Footprint Wizard, and Datasheet-Based Creation

In this video, we will guide you through three distinct manual component import methods; employing an external library, utilizing the internal IPC Compliant Footprint Wizard, or creating one yourself based on documentation.

Embedded thumbnail for Import Component Footprints Faster with Altium Designer. Part I: Manufacturer Part Search & External Plugin
Import Component Footprints Faster with Altium Designer
Import Component Footprints Faster with Altium Designer. Part I: Manufacturer Part Search & External Plugin

In this video, we will demonstrate the first two methods of importing components into Altium Designer; through Manufacturer Part Search or by using an external plugin.

Embedded thumbnail for Buck Converter
Simulation in Altium Designer
Buck Converter

Learn how to run a transient simulation, analyze the waveforms, and measurement techniques you can use to determine a voltage ripple with a buck converter as an example. 

Embedded thumbnail for Edge Plating in RF Design
How-To's
Edge Plating in RF Design

PCB Edge Plating provides additional noise suppression and improves EMC. In this video we provide you some practical tips for creating metalized PCB edges in Altium Designer.

Tag
Your search returns no results.