Welcome, Guest

Sign in to learn, create, and do more with the product you love.

News & Updates

Filters:
Tag
Collaborators Visualization
Blog
Soft Locks [Conflict Prevention] in Altium 365

Conflicts can occur when multiple people work on the same project simultaneously. The user might not realize that they are not looking at the latest version of the documentation, leading to problems later. To address this issue, Altium features an intuitive graphical user interface that allows you to examine conflicts quickly and carefully

Component Creation
On-Demand Webinar
Increase Productivity With Easy Component Creation

Component creation is a necessary evil when it comes to design, and it’s something we all need to do. But instead of spending hours creating your components and having them turn into a complete roadblock, let it be just a simple bump on the road. Altium Designer has several tools available to you in order to create the different aspects of a component, including the symbol, footprint, 3D model parametric data, supply chain information, and more

Guide to Monte Carlo in SPICE
Blog
The Basics of Monte Carlo in SPICE: Theory and Demo

Anytime you place a component in your PCB, it’s almost like you’re gambling. All components have tolerances, and some of these are very precise, but others components can have very wide tolerances on their nominal values. In the event the tolerances on these components become too large, how can you predict how these tolerances will affect your circuits?

Embedded thumbnail for MCAD CoDesigner Quick Start: PTC Creo
Working with MCAD CoDesigner extension
MCAD CoDesigner Quick Start: PTC Creo

MCAD CoDesigner is built to address the challenges of electronic product design by enabling seamless collaboration between your electrical and mechanical engineers. This video will show you how to start collaborate between Altium Designer and PTC Creo

Embedded thumbnail for Variants in Multi-Channel Designs
How to work with Variants
Variants in Multi-Channel Designs

Multi-channel designs can utilize variations in the channels to reduce design time and sheet count. We’ll show you how to take advantage of this by configuring several types of components.

BGA Land Patterns and Footprints
Blog
What's In Your BGA Land Pattern and Footprint

If you look in datasheets for most components, you’ll often find a recommended land pattern, usually alongside some mechanical package information and assembly information. This is not always the case with BGA components, especially components with high ball count. There are a few reasons for this that we can speculate: those ball counts might just be too big to put into a single page, or the manufacturer just expects you to know how to create that land pattern.

Embedded thumbnail for Stackup Considerations
DFM and Fabrication Cost/Time Constraints
Stackup Considerations

There is a lot to consider about the Layer Stackup when it comes to designing a manufacturable board. We’ll walk you through enabling symmetry, finding correct balance of your layers, materials, creating and loading templates, and adding a layer stack table for better communication between you and your manufacturer.

Molded Interconnect Devices
Blog
MIDs Make a Comeback as Vertical SMD Modules for Your PCB

Molded interconnect devices are essentially plastic molded substrates with traces running along any surface, including at right angles and running vertically. Altium users can use the new 3D Routing extension to design their own component carriers, which can be mounted vertically in a standard assembly process. If you’ve always wanted to vertically mount components or entire circuits, but without the expense of adding a flex section to your design, the new 3D Routing extension with HARTING’s component carrier designs provides a unique solution.

Embedded thumbnail for What Are Design Variants For?
How to work with Variants
What Are Design Variants For?

Variants in Altium Designer allow you to create several variations of the same design all from one source project. Variants can be managed in the project and through Altium Designer you can control variants in the PCB, Schematic, Draftsman, and Outjob files to make your designs easily editable without redundancy.

MCAD CoDesign Process
Blog
MCAD CoDesigner 2.9.0 is Out

Altium has released version 2.9.0 of the MCAD CoDesigner. This version has the option to exclude small components when transferring from ECAD to MCAD. The arc behavior was improved, and the support for splines in board shape and cutouts was added. With this release, you can now select a specific SOLIDWORKS configuration of a part to use on the board and view the improvements made for Siemens NX.

Rigid-Flex in Altium Designer
Blog
Support for Rigid-Flex in Altium Designer

Altium Designer's world-class PCB design features help users quickly get started with new rigid-flex designs and prepare them for manufacturing. Rigid-flex in Altium Designer starts with designing a manufacturable PCB layer stack complete with via transitions and any calculated impedance requirements. Keep reading to see how Altium Designer supports your flex and rigid-flex designs.

Embedded thumbnail for MCAD CoDesigner Quick Start: Solidworks
Working with MCAD CoDesigner extension
MCAD CoDesigner Quick Start: Solidworks

MCAD CoDesigner is built to address the challenges of electronic product design by enabling seamless collaboration between your electrical and mechanical engineers. This video will show you how to start collaborate between Altium Designer and SolidWorks. 

Embedded thumbnail for Panelization
DFM and Fabrication Cost/Time Constraints
Panelization

When you go to manufacture your design you can get a board manufactured by itself or with multiple in a panel. We’ll show you the how and the why to create panelization with the Embedded Board Array/Panelize tool, as well as how to create break away points for your individual boards.

2+N+2 PCB Stackups
Blog
2+N+2 PCB Stackup Design for HDI Boards

Like any other advanced PCB, success in HDI design comes from designing the right stackup. One common HDI stackup used to support routing into moderate pin count, high-density BGA components is the 2+N+2 PCB layer stack for HDI boards. We’ll explore this stackup more in this article, as well as how it is related to other advanced stackups used in HDI PCBs.

Embedded thumbnail for Display Variants in Draftsman Document
How to work with Variants
Display Variants in Draftsman Document

You can use the draftsman document to display your board variants. We’ll show you how to create a draftsman document and add variants to it properly displayed and editable through the properties panel.

PDF Viewer in Altium 365
Blog
PDF in Altium 365 Web Viewer

Altium 365 Web Viewer now includes a built-in PDF viewer that allows you to view PDF files in releases without an external PDF viewer application. Keep reading to learn about new key features that make your work easier

Embedded thumbnail for How to print PCB?
How-To's
How to print PCB?

Do you want to know how to use the updated document output feature? This video tells about the changes to the document output and shows how to quickly form a PDF or print a PCB in Altium Designer 21.

Embedded thumbnail for Avoid Solder Wicking
DFM and Fabrication Cost/Time Constraints
Avoid Solder Wicking

If solder gets sucked into via holes in can cause an unreliable connection in your otherwise manufacturable design. We’ll show you a few easy ways to avoid this solder wicking using rules.

Rigid-Flex Applications
Blog
Flex and Rigid-Flex PCB Applications

There are two basic reasons for designing a flex circuit into your product: to build a compact and efficiently assembled device, or to make the circuit dynamically integrated with the mechanical function of the product. You may, of course, lean on both of these reasons for justifying the use of flex circuits. On this note, let’s look at some rigid-flex PCB applications and design examples to see the issues that spring to mind when designing flex circuits

Altium Designer Interface
On-Demand Webinar
Preparing your files for Fabrication Release

When you’re done creating a new board, it’s time to send your design data to the manufacturer. Before releasing your designs, you’ll want to make sure that everything is ready and works as intended. In this informative video, we’ll review some of the must-have checks before sending your output data for fabrication. 

Tag
EMI and thermal challenges in 5G design
Blog
Designing 5G Devices

The next stage in the evolution of mobile telephony is here with the roll-out of 5G. The designer looking to incorporate functionality to handle 5G signals into their circuits will face some challenging issues. So, what’s so special about 5G?

PCB tracks
Blog
All About Your PCB Trace Length: How Long is Too Long?

The maximum PCB trace length you can place between two components depends on multiple factors, such as signaling protocol, component specification, losses in PCB laminate, and skew. With all this in mind, let’s look at where losses accumulate along the channel.

LDO
Blog
Using an LDO vs. Switching Regulator in Your PCB

For low power devices, we generally see two types of power regulators: a low dropout regulator (LDO) or a switching regulator. You can mix and match these at different points along your power bus, but there’s still the matter of choosing whether to use an LDO vs. a switching regulator in your designs. If you’ve ever wondered how these decisions are made and when to use each type of regulator, just know that there is more to this decision than simply looking at the input/output voltage/current.

Natural flux
Blog
What They Don’t Teach You About Fluxes

PCB fabrication is an extremely complex technological topic that deserves recognition as the most fundamental part of PCB engineering. Unless connectors, conductive adhesive, wire-bonding, or zebra-tape are used, in the modern electronics industry it’s always necessary to use some kind of flux during the soldering process to create an electric connection. In this article, we’ll discuss fluxes — what they are, what they are made of (yes, there is going to be a lot of chemistry, don’t be scared), how they should be used, and in what direction the industry is going.

PCB with ice for best cooling
Blog
Thermal Management for Integrated Circuits

As anyone who designs and builds electronic devices knows, the device will generate heat when it’s switched on. Wherever current flows through an impedance, energy losses will manifest themselves as heat. Integrated circuit packaging is getting smaller to meet the trend for more compact devices but at the cost of poorer thermal properties. This article describes the basic thermal management approaches to consider in your next designs. 

Blog
Anatomy of Latitude Part Two: "Thread with a Needle” in the context of energy

We continue to explore the magic of energy conversion in a PWM transducer. Why is it magic? Theoretically, in a PWM transducer this happens without losses, isn't that magic? A PWM transducer, like a tailor with scissors, cuts the “fabric of energy” into pieces, and then, like a sewing machine, stitches the pieces of energy into a dress - DC Magnitude. What is a constant component and how can we get it? Let's explore!

Pulse Width Regulation Module
Blog
Anatomy of Latitude Part One: Pulse Width Modulation (PWM) as a Result of the Evolution of Linear Systems

There are different techniques in the world of technology to achieve various goals, both final and intermediate. Some techniques are so successful that they are commonly used with high efficiency. Electronics is no exception. The greatest example is the use of Pulse Width Modulation (PWM) signals (energy), which is applied in any modern electronic device. To apply PWM effectively, it is necessary to understand the engineering difficulties that engineers faced in the past, and the thoughts and ideas that subsequently were combined into effective, complete PWM power solutions.

Electrolytic capacitor
Blog
What Influences Electrolytic Capacitor Lifespan?

If you speak with a bunch of design engineers, you might quickly form the opinion that the electrolytic capacitor has a particularly dubious reputation. A faulty electrolyte mix used in these types of capacitors led to premature device failures, and quite often, a “bit of a mess” was made to the PCBs on which they were soldered. However, despite the problem of the capacitor plague, this article is focusing on helping the designer understand how to get many more years of useful life from an electrolytic capacitor.

Elegant writing
Blog
Creating Elegant and Readable Schematics

A schematic drawing will not only tell your PCB design software what needs to connect where, but it also communicates the purpose of a circuit to other people. It’s easy to create a schematic, but it can be harder to make a helpful schematic that can be quickly and easily read and comprehended by the reader. In this guide, based on years of industry experience, we will show you how to improve your schematic layout so that your designs are elegant and readable.

Copper rings
Blog
Must Have Rapid Prototyping Tools

Suppose your job involves rapidly iterating designs or creating a wide variety of products for clients. In that case, there are some essential tools available that can save you a tremendous amount of time, bringing high engineering risk devices to completion successfully. Whether you’re working on internal projects or developing high mix devices for clients as a consulting or freelance firm, these indispensable tools will help you ship a higher quality product in less time. 

Blog
Best Practices for Sharing PCB Files vs. Sharing PCB Projects

Even though today’s cloud platforms are immaculately secure and they allow a range of files to be easily shared, there are times where you should limit the data you’re sharing to only the critical files required. For PCB designers, this means either sharing entire design projects or sharing individual files with your manufacturer, customers, contractors, or collaborators. If you want to eliminate liabilities and keep your team’s design data secure, consider these best practices for sharing PCB design data with Altium 365.

Principial Schematic
Blog
Best Practices for Using Reference Designs

Best component companies will release reference designs for their new and legacy products to show designers an example application for a component. If the reference design is good enough and it very nicely illustrates how to quickly engineer around a few main components, I’m likely to use them in the design and the component maker has just earned my business. If you’re a newer designer and you’re wondering whether reference designs are right for your next project, follow these best practices so that you don’t make any mistakes with your reference design.

Traces on PCB
Blog
Transmission Line Fundamentals And Electromagnetic Fields, Part 1

When we deal with “abstract” aspects of electromagnetic fields and how they function, it can be easy to get lost in the weeds regarding them. The first part of this article will address an important aspect of transmission line fundamentals, namely how electromagnetic fields and waves propagate on a transmission line. This article’s end goal is to create a core understanding of these concepts so that when it comes time to design a PDS, the proper design methodologies are followed and a properly working PDS is achieved appropriately, the first time and every time.

BGA pads
Blog
Your Complete Guide to Via Stub Analysis

Via stubs are sometimes viewed as an annoyance, especially when you only need to make a transition between adjacent layers. For low speed, less-dense boards with low layer count, via stubs are an afterthought, or they may not receive consideration at all. For faster edge rates/higher frequencies, the conventional wisdom is to remove all via stubs. The question is: what exactly counts as “high frequency,” and how do you figure out the relevant length?

Thermal camera on people
Blog
Using a Thermal Camera for PCB Diagnostics

Unlike the clumsy human finger, a thermal camera can detect minute temperature differences across its view. This allows you to rapidly identify any components that are consuming current. Any parts or areas of your board that draw current will also generate heat that can easily be picked up by a thermal camera.

Soldering station
Blog
Complete Guide to DIY SMT Assembly In Your Office

I want to share a little secret with you in this article: Assembling SMT prototypes boards is not only easy, but it requires very little equipment. Using just a stencil, I can easily hand prototype down to 0.3 mm pitch ICs, and 0201 (imperial) sized passive components.  If you’re currently hand assembling boards with a soldering station, you need to stop this immediately and start using a stencil instead!

Tag
Tackle Any Design Complexity With the Constraint Manager
What's New in 23.11
Tackle Any Design Complexity With the Constraint Manager

For enterprise and pro subscriptions, the new Constraint Manager offers a table-based interface, accessible from both Schematic and PCB, allowing you to define constraints more collaboratively. Engineers and stakeholders can collectively set design constraints with ease.

Tackle Any Design Complexity With the Constraint Manager
What's New in 23.11
使用约束管理器应对任何设计复杂性

对于企业版和专业版订阅用户,新约束管理器提供了基于表格的界面,无论从原理图还是 PCB 都可以访问,帮助您加强在约束定义方面的协作力度。工程师和协作者都可以轻松地共同设置设计约束。

Embedded thumbnail for Minimize Manual Effort With Automatic Length Tuning
What's New in 23.11
Minimize Manual Effort With Automatic Length Tuning

Automatic Length Tuning introduces automatic length and delay tuning functionality in 2D mode, accessed conveniently from the main Route menu. This feature reduces the manual effort typically associated with length and delay tuning, expediting your design process.

Embedded thumbnail for Minimize Manual Effort With Automatic Length Tuning
What's New in 23.11
通过自动长度调整功能来减少手动操作

自动长度调整提供 2D 模式下的自动长度调整和延迟调整功能,可方便地从主布线菜单访问。该功能可以减少进行长度调整和延迟调整时通常需要的手动操作,从而加快设计进程。

Embedded thumbnail for The Most Common 2-Layer PCB Design Mistakes and How To Avoid Them
How-To's
The Most Common 2-Layer PCB Design Mistakes and How To Avoid Them

Do you encounter issues when preparing a two-layer board? In this video, we address some of the most common mistakes made with this type of board and explain why upgrading to a four-layer board might be the solution you need.

Embedded thumbnail for Coming Soon: Ansys CoDesigner
How-To's
Coming Soon: Ansys CoDesigner

Ansys CoDesigner (which will be released on the13th of December) simplifies your design process by connecting ECAD and Simulation to eliminate manual export/import steps. With features like design change synchronization and commenting, Altium Designer ECAD engineers and Ansys Electronics Desktop (AEDT) SIM engineers can collaborate seamlessly in one workspace.

Embedded thumbnail for Coming Soon: Automatic Multi-Net Tuning
How-To's
Coming Soon: Automatic Multi-Net Tuning

Automatic Multi-Net Tuning enhances PCB design accuracy and efficiency by automatically adjusting multiple nets simultaneously to meet specific design rules, including length and delay. Learn more about this feature, which will be released on December 13th. Its flexibility enables effective work with differential pairs and traces at any angle. It not only identifies but also rectifies issues related to automatic length tuning, ensuring your designs adhere to key standards without the need for manual adjustments.

Embedded thumbnail for Coming Soon: PCB CoDesign
How-To's
Coming Soon: PCB CoDesign

PCB CoDesign makes it easier for everyone to work together and meet project deadlines. In Altium Designer 24, which is scheduled for release on December 13th, we are introducing a new feature. This feature optimizes your resources through a Git-like approach, allowing multiple team members to work simultaneously and commit changes to a master branch. This expedites the design process and lowers project costs.

Embedded thumbnail for Coming Soon: MultiBoard Draftsman
How-To's
Coming Soon: MultiBoard Draftsman

MultiBoard Draftsman enhances the efficiency of design reviews and assembly precision by offering a unified platform for detailed viewing and documentation of MultiBoard Designs. Discover more about this feature in our brand-new short video.

Embedded thumbnail for Coming Soon: PCB Layout Replication
How-To's
Coming Soon: PCB Layout Replication

PCB Layout Replication allows quick replication of layouts for repetitive circuitry blocks in a flat PCB design. In this short video we will show you how this new tool (scheduled for release on December 13th) eliminates the need to do repetitive tasks manually or for various workarounds like snippets or multi-channel designs.

Embedded thumbnail for Coming Soon: Constraint Manager
How-To's
Coming Soon: Constraint Manager

Constraint Manager simplifies PCB design by facilitating collaborative constraint definition from both Schematic and PCB. Learn more about this new feature, which streamlines the process of setting electrical clearances and creating rules while centralizing class management for time-saving convenience.

Embedded thumbnail for Debounce Circuit
Simulation in Altium Designer
Debounce Circuit

Learn how to simulate the circuit, identify a common issue, and walk through how to diagnose and correct any errors found in a seemingly well-designed debounce circuit. 

Embedded thumbnail for Import Component Footprints Faster with Altium Designer. Part II: Using an External Library, Internal IPC Compliant Footprint Wizard, and Datasheet-Based Creation
Import Component Footprints Faster with Altium Designer
Import Component Footprints Faster with Altium Designer. Part II: Using an External Library, Internal IPC Compliant Footprint Wizard, and Datasheet-Based Creation

In this video, we will guide you through three distinct manual component import methods; employing an external library, utilizing the internal IPC Compliant Footprint Wizard, or creating one yourself based on documentation.

Embedded thumbnail for Import Component Footprints Faster with Altium Designer. Part I: Manufacturer Part Search & External Plugin
Import Component Footprints Faster with Altium Designer
Import Component Footprints Faster with Altium Designer. Part I: Manufacturer Part Search & External Plugin

In this video, we will demonstrate the first two methods of importing components into Altium Designer; through Manufacturer Part Search or by using an external plugin.

Embedded thumbnail for Buck Converter
Simulation in Altium Designer
Buck Converter

Learn how to run a transient simulation, analyze the waveforms, and measurement techniques you can use to determine a voltage ripple with a buck converter as an example. 

Embedded thumbnail for Edge Plating in RF Design
How-To's
Edge Plating in RF Design

PCB Edge Plating provides additional noise suppression and improves EMC. In this video we provide you some practical tips for creating metalized PCB edges in Altium Designer.

Tag
Your search returns no results.